

HBU
Höhere Berufsbildung Uster
Höhere Fachschule Uster

Diplomarbeit
KVM Store Server

Key - Value-Map Store Server

Eine Diplomarbeit von Theodor Bogdanovic
für die Höhere Fachschule Uster

HF Informatik NDS

5. März 2018

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 89

11 Anleitungen
In den nachfolgenden beiden Unterabschnitten sind sämtliche Informationen enthalten, um den
kvmstoreserver zu installieren und zu betreiben.

11.1 Installationsanleitung

Diese Anleitung geht von einem bereits installierten Ubuntu Linux 16.04.x Server aus. Sollte dies
nicht der Fall sein, holen Sie sich bitte die notwendige technische Unterstützung, um die Installation
durchzuführen. Alternativ zu Testzwecken, kann auch eine Desktopversion genutzt werden. Hierzu
können Sie einen der beiden nachfolgenden Links nutzen:

• Deutsch: https://wiki.ubuntuusers.de/Ubuntu_Installation/
• English: https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop

11.1.1 Installation

Die Installation wird durch ein Shell Script realisiert, welches whiptail (Fensterdarstellung in der
Konsole) als Frontend nutzt. Die Installation wurde so einfach wie möglich gehalten und benötigt
lediglich drei User Eingaben, um kvmstoreserver zu installieren. An dieser Stelle sollen nur die
Schritte beschrieben werden, die notwendig sind, um den Installer anzustossen.

Schritt 1/5:

Kopieren Sie das gezippte TAR Archiv kvmss-installer.tar.gz in ein Verzeichnis Ihrer Wahl innerhalb
Ihres Linux Accounts.

Schritt 2/5:

Starten Sie eine Konsole. Wechseln Sie in das Verzeichnis, in welchem sich das TAR Archiv befindet.
Entpacken Sie den Installer mit nachfolgender Konsolenanweisung:

Schritt 3/5:

Beim Entpacken wurde das Verzeichnis kvmstoreserver_installer erzeugt. Wechseln Sie nun in dieses
Verzeichnis mit der Konsolenanweisung:

Schritt 4/5:

Führen Sie nachfolgende Konsolenanweisung aus. Diese startet den Installer. Sie benötigen ROOT
Rechte für die Ausführung des Installers «sudo».

tar -xvf kvmss-installer.tar.gz

cd kvmstoreserver_installer

sudo ./kvmss-installer.sh

https://wiki.ubuntuusers.de/Ubuntu_Installation/
https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 90

Schritt 5/5:

Folgen Sie den Anweisungen des grafischen Installers. Nach seiner Beendigung haben Sie eine bereits
laufende Instanz des Key – Value-Map Store Servers.

Wenn Sie möchten, können Sie das Verzeichnis kvmstoreserver_installer und das TAR Archiv kvmss-
installer.tar.gz löschen. Es wird empfohlen, es beizubehalten, da im Verzeichnis der Deinstaller
integriert ist.

11.1.2 Deinstallieren

Haben Sie das Verzeichnis und das TAR Archiv bereits gelöscht, führen Sie bitte alle Schritte wie unter
Punkt 11.1.1 beschrieben, nochmals aus. Ansonsten können Sie bei Schritt 3/5 einsteigen.

Die Deinstallation funktioniert gleich wie die Installation, da der Deinstaller im Installer integriert ist.
Somit werden Sie wieder zum grafischen Frontend geleitet. Folgen Sie auch hier den Anweisungen
des Tools. Sie müssen hier hauptsächlich nur noch bestätigen.

Der Deinstaller entfernt ALLE Komponenten und Daten von der Harddisk. Er übernimmt auch die
Deregistrierung des Service beim Systemd Init Daemon.

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 91

11.2 Benutzeranleitung / API Referenz

Dieser Abschnitt unterteilt sich in zwei Unterabschnitte. Im ersten wird die Nutzung der RESTful JSON
Schnittstelle behandelt und im zweiten die Konfigurationsmöglichkeiten des kvmstoreserver.

11.2.1 API Referenz

In diesem Abschnitt werden wir die Möglichkeiten betrachten, wie wir Daten in den kvmstoreserver
hochladen, auf sie wieder zugreifen und sie bei Bedarf wieder entfernen können. Hierzu soll
nachfolgendes JSON Dokument als Basisbeispiel für sämtliche Demonstrationen dienen.

Grundsätzlich wurde der kvmstoreserver so entwickelt, dass jedes valide JSON Dokument
gespeichert werden kann. Hätte das Beispiel oben eine verschachtelte Innenstruktur, welche unter
einem eigenen Namen hinterlegt wäre, so wäre es für den kvmstoreserver weiterhin valid. Man
könnte aber nur den Innenstrukturnamen adressieren und hätte als Antwort ein ganzes JSON
Dokument. Dies ist nicht der primäre Einsatzzweck dieses Produktes. Er soll lediglich eine Mappe an
Werten an einen Key binden können. Das Beispiel von oben ist hierfür ideal, da es sämtliche validen
Datentypen abdeckt, die in einem JSON Dokument, aber auch im kvmstoreserver, zulässig sind.

Für die nachfolgenden Beispiele benötigen Sie einen Rest Client. Sie können hier den Client Ihrer
Wahl verwenden. Achten Sie lediglich darauf, dass sein Request Header auf
Content-Type : application/json gestellt ist. Sollte Ihr Client nicht das automatische Erkennen von
Response Types unterstützen, so setzen Sie die Einstellungen für den Response Header auf
Accept : application/json.

11.2.1.1 Eintrag erzeugen

Wir wollen das obige JSON Beispiel unter dem Key Name work-srv-1.conf hinterlegen. Kopieren Sie
das Beispiel und fügen Sie es in Ihren Client als Content hinzu. Geben Sie als URL folgendes ein:

Dies kopiert Ihr JSON Dokument in den kvmstoreserver unter der Revisionsnummer 0. Als Antwort
erhalten Sie ein JSON Dokument, welches den Response Status 201 (Creadet) als Feld enthält, eine
kurze Operationsbeschreibung sowie einen Text, welcher auf die aktuelle Revisionsnummer 0
verweist. Sollte etwas schiefgelaufen sein, wiederholen Sie die Schritte. Ursache des Fehlers könnte
ein Schreibfehler sein.

{
 "system_name": "Workflow-Server-1",
 "system_number": 1,
 "system_version": 1.2,
 "system_active": true,
 "system_null": null
}

http://<Domönen Namen oder IP>:3344/add/work-srv.conf

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 92

Möchten Sie eine Korrektur nachspeichern, wie bspw. das JSON Feld system_active auf false setzen,
dann ändern Sie jetzt den Value im JSON Dokument und rufen Sie nochmals den /add/ Controller,
wie oben beschrieben, auf. Nun haben Sie die erste Version als Revision 0 und die Korrektur als
Revision 1 gespeichert.

11.2.1.2 Einträge abrufen

Möchten Sie das soeben eingefügte Dokument komplett einsehen, bzw. die aktuellste
Revisionsnummer 1, dann geben Sie nachfolgendes in Ihre Client URL-Adressleiste ein:

Dies liefert Ihnen das gesamte Dokument zurück, so wie Sie es hochgeladen haben.

Möchten Sie die erste Version des gesamten Dokuments, welche unter der Revisionsnummer 0
hinterlegt ist, einsehen, müssen Sie folgenden Aufruf durchführen:

Nun erhalten Sie die erste Version des Dokuments, in welcher das Feld system_avtive noch auf true
steht.

Möchten Sie nur den Value des JSON Feldes system_active zurückgeliefert bekommen, müssen Sie
den search Parameter benutzen:

Nun erhalten Sie einen Response zurück, in welchem der Body nur den JSON Type false enthält.
Dieser Case ist der am häufigsten verwendete in der Praxis, denn in der Regel möchte man lediglich
einen Konfigurationsparameter für ein Endsystem abrufen und nicht erst mit viel Aufwand den
Response Body parsen.

Nun möchten wir wissen, welchen Wert der Konfigurationsparameter system_active vor der
Korrektur hatte. Dieser liegt in der Revision 0.

Nun sollten wir als Ergebnis einen JSON Type true zurückerhalten, denn diesen Wert hatte das Feld
bei der ersten Erstellung.

Die Reihenfolge der Parameter ist übrigens egal. Search hätte auch als erster Query Parameter
deklariert werden können. Lediglich die Parameter – Initialisierung «?» und die Deklaration der
Nachfolgeparameter «&» ist von der Reihenfolge her relevant.

http://<Domönen Namen order IP>:3344/get/work-srv.conf

http://<Domönen Namen order IP>:3344/get/work-srv.conf?rev=0

http://<Domönen Namen order IP>:3344/get/work-srv.conf?search=system_active

http://<Domönen Namen order IP>:3344/get/work-srv.conf?rev=0&search=system_active

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 93

11.2.1.3 Eintrag entfernen

Nehmen wir an, dass unsere Konfiguration work-srv.conf nicht mehr benötigt wird. In diesem Fall
können wir sie vom kvmstoreserver löschen. Dazu muss erstens einmal der /del/ Controller
angesprochen werden und zweitens ein spezifisches JSON Dokument für den Löschauftrag erstellt
und mitgegeben werden.

Eine solche Löschanforderung könnte dabei wie folgt aussehen:

Dieser JSON Body muss noch mitgegeben werden:

Grundsätzlich muss jede Löschanweisung den URL Key Namen im JSON Feld key_name tragen. Dies
dient der Bestätigung seitens User oder Applikation, ob der Key grundsätzlich der richtige ist. Als
Sicherheitsmassnahme ist auch jede Löschanfrage mit confirm_delete zu bestätigen.

11.2.1.4 Allgemeine Informationen

Grundsätzlich sind auch Key Namen mit Leerschlag erlaubt. Auch ein breites Set an Sonderzeichen
wird unterstützt. Dennoch wird empfohlen keine solchen Elemente im Key Namen zu verwenden. Als
allgemeine Richtlinie könnte gelten, was nicht in einem Windows Dateinamen erlaubt ist, sollte auch
nicht im Key Namen vorkommen.

11.2.1.5 Den Binärbaum einsehen

Möchten Sie eine vom Binärbaum in einen Slice gemappte Ansicht des Baumes sehen, so rufen Sie
folgendes auf:

11.2.1.6 Versionsinformationen

Für allgemeine Informationen über den kvmstoreserver, können Sie nachfolgendes eingeben. Als
kleiner Tipp, wenn Sie die Verfügbarkeit des kvmstoreserver monitoren möchten, bspw. mit Zabbix,
so können Sie diesen Aufruf für periodisches Polling nutzen:

http://<Domönen Namen order IP>:3344/del/work-srv.conf

{
 "key_name": "work-srv.conf",
 "confirm_delete": true
}

http://<Domönen Namen order IP>:3344/tree

http://<Domönen Namen order IP>:3344/version

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 94

11.2.2 Kvmstoreserver Konfiguration

Der kvmstoreserver kann grundsätzlich nur per Konfigurationsdatei konfiguriert werden. Diese liegt
nach der Installation im User HOME Verzeichnis des Users kvmstoreserver, unter
/home/kvmstoreserver/kvmstoreserver/etc/kvmstoreserver.conf. Möchten Sie hier Änderungen
vornehmen, dann loggen Sie sich als User kvmstoreserver mit dem Passwort, welches Sie bei der
Installation vergeben haben, ein und wechseln Sie ins oben angegebene Verzeichnis. Hier können Sie
mit einem Editor Ihrer Wahl die Konfigurationsdatei öffnen. Sie sehen dabei folgende Parameter, die
konfigurierbar sind:

11.2.2.1 storage_target

Hier wird der Pfad angegeben, in welchem der kvmstoreserver die JSON Files abspeichern kann.

11.2.2.2 serde_driver

Hier können Sie entscheiden, welcher Typ Speicher Backend verwendet werden soll. In dieser
Version steht nur der Filesystem Driver filesystem zur Wahl. Backend Driver für MSSQL und Postgres
können in einer nachfolgenden Produktivversion folgen.

11.2.2.3 defualt_log_file

Der Pfad und Standard Name des Logfiles.

11.2.2.4 Log File Parameter
• Log_max_size_mb: Definiert wie gross das Log File in Megabyte werden darf.
• Log_max_age_days: Definiert wie alt das älteste Log File sein darf, bevor es gelöscht wird.
• Log_write_to_console: Schreibt die Applikationslogs parallel ins File und auf die Konsole.

Dieser Parameter steht per Default auf false und sollte nur zu Debugging – Zwecken aktiviert
werden. Das Schrieben auf die Konsole bedeutet bei einem Systemd Init System, dass die
Logs auch nach /var/log/syslog geschrieben werden. Dies kann syslog mit der Zeit überfüllen.

11.2.2.5 http Parameter
• http_hostname: Geben Sie hier den Domänennamen oder die IP ein, auf welche der

kvmstoreserver hören soll. Die Eingabe des Installers wurde hier hingeschrieben.
• http_port: Der kvmstoreserver hört standardmässig auf Port 3344. Wünschen Sie einen

Portwechsel, können Sie hier einen neuen eingeben. Achtung: Ports unter 1024 können nur
mit Root – Rechten genutzt werden!

• read_header_timeout: Definiert wie lange auf einen hängenden Header (korrupter Header)
gewartet werden soll bzw. auf sein Ende. Angabe in Sekunden. Der Default Wert ist optimal
und sollte nicht geändert werden.

• read_timeout: Definiert wie lange ein Request Read dauern darf. Sollten extrem grosse JSON
Dokumente zum Einsatz kommen oder die Netzwerkverbindung zu langsam sein, sollte
dieser Wert (in Sekunden) zwingend erhöht werden.

• write_timeout: Definiert wie lange der kvmstoreserver in einen Response schreiben darf.
Auch hier gilt: Sind die JSON Dokumente sehr gross oder ist die Verbindung sehr träge,
zwingend den Wert (in Sekunden) erhöhen.

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 95

• tcp_idle_timeout_millsec: Dieser Wert definiert, wie lange der kvmstoreserver bzw. der OS
Kernel Network Stack, eine geschlossene TCP Verbindung als Socket Tupel aufrecht erhalten
soll. Haben Sie eine Umgebung, welche aus vielen Clients besteht, welche in langen
Intervallen auf den kvmstoreserver zugreifen, sollte dieser Wert klein gehalten werden (100
Millisekunden gelten als Optimum). Habe Sie hingen wenig Clients, die in kurzen Intervallen
wie bspw. alle 20 Sekunden, Zugriffe ausführen, so ist ein Wert von 20 Sekunden bzw. 20'000
Millisekunden optimal.

11.2.2.6 Route Parameter
• ctrl_add_path: (Default: /add/); Hier kann der URL Pfad zum Hinzufügen von Dokumenten

definiert werden.
• ctrl_get_path: (Default: /get/); Hier kann der URL Pfad zum Abrufen von Dokumenten

definiert werden.
• ctrl_del_path: (Default: /del/); Hier kann der URL Pfad zum Löschen von Dokumenten

definiert werden.
• ctrl_tree_path: (Default: /tree); Hier kann definiert werden, wie der Pfad zum Btree-zu-Slice

Mapper lauten soll.
• ctrl_version_path: (Default: /version); Hier kann definiert werden, wie der Pfad zur

Versionsinfo lauten soll.

Hinweis: Die Pfadlänge der add, get und del Controller ist auf 1 beschränkt. Konfigurationen wie
bspw. /controller/add sind nicht zugelassen, werden aber nicht als Fehler angesehen. Die
Funktionsweise des kvmstoreserver ist aber nicht mehr gewährleistet. Auf eine Einschränkung wurde
bewusst verzichtet, da in einer zukünftigen Produktivversion ein anderer Ansatz verfolgt werden soll.
Daher sollen an dieser Stelle keine Code spezifischen Restriktionen eingebaut werden, welche
nachträglich wieder entfernt werden müssen. Zusätzlich MUSS jeder der genannten Controller mit
einem Backslash («/») enden. Der Grund ist der gleiche wie bei der Pfadlänge.

11.2.2.7 STATIC und DYNAMIC

Diese Version ist mit der configPoller Erweiterung kompiliert worden. Dies bedeutet, dass alle
Änderungen an der Konfigurationsdatei in einem Intervall von 60 Sekunden (Hard Coded) erkannt
werden. Die erkannten Änderungen werden dann zur Laufzeit des kvmstoreserver geladen und sind
sofort aktiv. Dies gilt aber nicht für alle Parameter. In der Konfigurationsdatei sind Kommentar –
Tags, welche zeigen, ob der Parameter vom Typ STATIC oder Typ DYNAMIC ist. Ist ein Parameter vom
Typ STATIC, so werden die Änderungen erst nach einem Neustart der Applikation wirksam. Ist er
hingegen vom Typ DYNAMIC, werden sie wirksam, sobald der configPoller einen Prüfintervall
anstösst und die Änderung wahrnimmt.

ACHTUNG: Sollte der Parameter fehlerhaft sein, also bspw. ein Buchstabe in einem Integer Wert
vorkommen, wird das Package configMap, welches für das Einlesen und die Zurverfügungstellung der
Konfiguration verantwortlich ist, in eine PANIC laufen. Der kvmstoreserver wird CRASHEN!!!

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 101

15 Anhang
Nachfolgend befinden sich die zur Arbeit gehöhrenden Komponenten, Beschreibungen und
Informationen, welche aber nicht expliziter Bestandteil der eigentlichen Problemlösung sind.

15.1 inject_client

Diese Komponente wurde im Verlauf der Arbeit entwickelt, um Connection – Belastungstests
durchführen zu können. Die Hauptaufgabe besteht hier explizit im Ausführen von Stresstests und
nicht im netzwerkseitigem Abfüllen des kvmstoreserver mit Daten. Der inject_clinet ist als
Konsolenapplikation entwickelt worden und liegt dem beiliegenden Datenträger bei. Er wurde für
Windows, Linux (Cross-Compiling, ungetestet) und MacOS X (Cross-Compiling, ungetestet)
kompiliert.

Inject_client wurde hauptsächlich auf der Plattform Windows entwickelt und eingesetzt. Es wird
empfohlen, ihn auch auf dieser Plattform einzusetzen. Linux hat hier Schwierigkeiten bei der
Erzeugung der hohen Anzahl an Socket – Files (Restriktion auf 1024 Files) und muss
dementsprechend zuerst um konfiguriert werden, damit der Client funktioniert. Die Nutzung auf
MacOS ist gänzlich ungetestet und die Funktionalität unbekannt.

Inject_clinet versucht, bei jedem Aufruf per Konsole 6000 gleichzeitige Connections zum Target
aufzubauen und, beginnend ab Parametereingabewert, JSON Dokumente nach einem statischen
Pattern in den kvmstoreserver abzulegen. Die Felder des Dokumentes beinhalten dabei die
Datentypen String, Integer (Go intern Int64), Float64, Boolean und JSON NULL (Go nil). Die Werte
basieren alle auf der Laufnummer (Integer), welche inkrementell ab Startpunkt erhöht wird.

Die Restriktion auf 6000 Connections bzw. parallel ausgeführte goroutinen, resultiert aus der
Tatsache, dass ein Windows System ca. 16000 (+ ein kleiner Überschuss) TCP Sockets öffnen kann
(mehr ist möglich nach Manipulation der Registry). Go bietet keine Möglichkeit, um den http Default
Client (Package) anzuweisen, die Connections zu schliessen. Windows hält die geöffneten Sockets im
State wait_close ca. 4 Minuten lang, was bedeutet, dass in dieser Zeit keine weiteren Connections
erlaubt sind, wenn der Range aufgebraucht ist. Aus diesem Grund werden lediglich 6000 Connections
pro Aufruf getätigt. So können zwei Durchläufe nacheinander getätigt werden, um eine
Durchschnittszeit zu erhalten.

Der inject_client liefert nach jedem erfolgreichen Durchlauf seine Gesamtlaufzeit sowie einen Print
des letzten Eintrages zwecks Überprüfung. Ein möglicher Aufruf könnte dabei wie folgt aussehen:

Der Parameterstart ist optional. Wird er nicht mitgegeben, so startet der Client immer bei 0 und geht
bis 5999. Sollen mehrere Revisionen über ein Set von Keys gelegt werden, muss der Client immer mit
der gleichen Startposition aufgerufen werden.

Hinweis: Sollte es zu Fehlern in goroutinen kommen, werden diese stets auf den aufrufenden
Standard Output der Konsole geschrieben. Mit Ctrl + c kann das Tool gestoppt werden.

Inject_client -target http://<Domönen Namen order IP>:3344 -start 10000

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 102

15.2 inject_disk

Das Tool inject_disk wurde zwecks kvmstoreserver Loader Testing entwickelt. Der einzige Sinn dieses
Tools besteht darin, eine definierte Zahl an Files zu generieren, welche einen JSON Dokumentinhalt
besitzen. Das Design des JSON Dokumentes ist dabei eine Kopie des im inject_client eingesetzten
Patterns.

Möchte man den kvmstoreserver testen und hat keine Lust, manuell Daten einzuspielen oder gar
einen Testclient zu schreiben, kann dieses Kommandozeilen – Tool verwendet werden. Da keine
Obergrenze für die Anzahl an zu erzeugenden JSON Objekten definiert ist, kann auch eine grosse
Anzahl erzeugt werden. Dies ist für Tests nahe den Realbedingungen ideal geeignet und kann helfen,
die Skalierung der Maximalzahl an Dokumenten, welche unter Abschnitt 9.7.6 beschrieben wird,
besser zu bestimmen.

Ein möglicher Aufruf von inject_disk könnte wie folgt aussehen:

Inject_disk wird durch den Installer mitinstalliert und liegt unter
/home/kvmstoreserver/kvmstoreserver/utils/inject_disk. Wird er vor Ort oder innerhalb des Home –
Verzeichnisses des Users kvmstoreserver (mit seinen Rechen) ausgeführt, kann auf die Angabe des
Parameters -target verzichtet werden.

Dieser Client liegt ebenfalls in Versionen für Windows, Linux und MacOs X vor.

Inject_disk -target /home/kvmstoreserver/kvmstoreserver/warehouse -objects 200’000

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver)

THEODOR BOGDANOVIC 103

15.3 Godoc mit http Repräsentation

Möchten Sie die Source Code Dokumentation in http Form sehen, können Sie godoc benutzen.
Hierfür muss zuerst die Go Compiler Collection herunterladen und installieren werden:

https://golang.org/dl/

Nach der Installation müssen Sie eine Eingabeaufforderung oder ein Terminal öffnen und folgendes
eingeben:

Hiermit hinterlegen Sie die Umgebungsvariable zum Projekt. Anschliessend müssen Sie folgendes in
die noch offene Eingabeaufforderung oder ein Termin eingeben:

Nun können Sie einen Browser öffnen und die IP / Domänenname, falls angegeben, sonst
http://localhost:3355 aufrufen. Hier können Sie nach den Package – Namen suchen, die in diesem
Projekt verwendet wurden.

Falls Sie noch umfangreicher mit godoc arbeiten wollen, ist nachfolgender Link empfehlenswert:

https://godoc.org/golang.org/x/tools/cmd/godoc

(Windows)  set GOPATH=<Pfad zum Datenträger>/raw_source_code

(Linux / MacOS)  export GOPATH=<Pfad zum Datenträger>/raw_source_code

godoc -http <IP / Domänenname falls gewünscht>:<Port beliebiger Wahl, empfohlen 3355>

https://golang.org/dl/
https://godoc.org/golang.org/x/tools/cmd/godoc

