HBU

Hohere Berufsbildung Uster
Hohere Fachschule Uster

Diplomarbeit

KVM Store Server

Key - Value-Map Store Server

JSON RESTful API Btree " File system

Eine Diplomarbeit von Theodor Bogdanovic
fur die Hohere Fachschule Uster

HF Informatik NDS

5. Marz 2018



ﬁ%ﬂﬁzgmég;‘ufsbildung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u
11 Anleitungen

In den nachfolgenden beiden Unterabschnitten sind samtliche Informationen enthalten, um den
kvmstoreserver zu installieren und zu betreiben.

Diese Anleitung geht von einem bereits installierten Ubuntu Linux 16.04.x Server aus. Sollte dies
nicht der Fall sein, holen Sie sich bitte die notwendige technische Unterstiitzung, um die Installation
durchzufiihren. Alternativ zu Testzwecken, kann auch eine Desktopversion genutzt werden. Hierzu
konnen Sie einen der beiden nachfolgenden Links nutzen:

e Deutsch: https://wiki.ubuntuusers.de/Ubuntu Installation/

e English: https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop

11.1.1 Installation

Die Installation wird durch ein Shell Script realisiert, welches whiptail (Fensterdarstellung in der
Konsole) als Frontend nutzt. Die Installation wurde so einfach wie moglich gehalten und benétigt
lediglich drei User Eingaben, um kvmstoreserver zu installieren. An dieser Stelle sollen nur die
Schritte beschrieben werden, die notwendig sind, um den Installer anzustossen.

Schritt 1/5:

Kopieren Sie das gezippte TAR Archiv kvmss-installer.tar.gz in ein Verzeichnis lhrer Wahl innerhalb
Ihres Linux Accounts.

Schritt 2/5:

Starten Sie eine Konsole. Wechseln Sie in das Verzeichnis, in welchem sich das TAR Archiv befindet.
Entpacken Sie den Installer mit nachfolgender Konsolenanweisung:

tar -xvf kvmss-installer.tar.gz

Schritt 3/5:

Beim Entpacken wurde das Verzeichnis kvmstoreserver_installer erzeugt. Wechseln Sie nun in dieses
Verzeichnis mit der Konsolenanweisung:

cd kvmstoreserver_installer

Schritt 4/5:

Fiihren Sie nachfolgende Konsolenanweisung aus. Diese startet den Installer. Sie bendtigen ROOT
Rechte fir die Ausfiihrung des Installers «sudo».

sudo ./kvmss-installer.sh

THEODOR BOGDANOVIC 89


https://wiki.ubuntuusers.de/Ubuntu_Installation/
https://tutorials.ubuntu.com/tutorial/tutorial-install-ubuntu-desktop

l.Il"cu»ﬂ““e.:""e“ B’érufsblldung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u

Schritt 5/5:

Folgen Sie den Anweisungen des grafischen Installers. Nach seiner Beendigung haben Sie eine bereits
laufende Instanz des Key — Value-Map Store Servers.

Wenn Sie mochten, kénnen Sie das Verzeichnis kvmstoreserver_installer und das TAR Archiv kvmss-
installer.tar.gz 16schen. Es wird empfohlen, es beizubehalten, da im Verzeichnis der Deinstaller
integriert ist.

11.1.2 Deinstallieren

Haben Sie das Verzeichnis und das TAR Archiv bereits geloscht, flihren Sie bitte alle Schritte wie unter
Punkt 11.1.1 beschrieben, nochmals aus. Ansonsten kénnen Sie bei Schritt 3/5 einsteigen.

Die Deinstallation funktioniert gleich wie die Installation, da der Deinstaller im Installer integriert ist.
Somit werden Sie wieder zum grafischen Frontend geleitet. Folgen Sie auch hier den Anweisungen
des Tools. Sie miissen hier hauptsachlich nur noch bestatigen.

Der Deinstaller entfernt ALLE Komponenten und Daten von der Harddisk. Er Gbernimmt auch die
Deregistrierung des Service beim Systemd Init Daemon.

THEODOR BOGDANOVIC 90



mc;m;:'"e" B’érufsblldung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u

Dieser Abschnitt unterteilt sich in zwei Unterabschnitte. Im ersten wird die Nutzung der RESTful JSON
Schnittstelle behandelt und im zweiten die Konfigurationsmoglichkeiten des kvmstoreserver.

11.2.1 API Referenz

In diesem Abschnitt werden wir die Mdglichkeiten betrachten, wie wir Daten in den kvmstoreserver
hochladen, auf sie wieder zugreifen und sie bei Bedarf wieder entfernen kénnen. Hierzu soll
nachfolgendes JSON Dokument als Basisbeispiel fiir samtliche Demonstrationen dienen.

"system_name": "Workflow-Server-1",
"system_number": 1,
"system_version": 1.2,
"system_active": true,

"system_null": null

Grundsatzlich wurde der kvmstoreserver so entwickelt, dass jedes valide JSON Dokument
gespeichert werden kann. Hatte das Beispiel oben eine verschachtelte Innenstruktur, welche unter
einem eigenen Namen hinterlegt ware, so ware es fir den kvmstoreserver weiterhin valid. Man
konnte aber nur den Innenstrukturnamen adressieren und hatte als Antwort ein ganzes JSON
Dokument. Dies ist nicht der primare Einsatzzweck dieses Produktes. Er soll lediglich eine Mappe an
Werten an einen Key binden kdnnen. Das Beispiel von oben ist hierfiir ideal, da es samtliche validen
Datentypen abdeckt, die in einem JSON Dokument, aber auch im kvmstoreserver, zuldssig sind.

Fiir die nachfolgenden Beispiele benétigen Sie einen Rest Client. Sie kénnen hier den Client Ihrer
Wahl verwenden. Achten Sie lediglich darauf, dass sein Request Header auf

Content-Type : application/json gestellt ist. Sollte |hr Client nicht das automatische Erkennen von
Response Types unterstiitzen, so setzen Sie die Einstellungen flir den Response Header auf
Accept : application/json.

11.2.1.1 Eintrag erzeugen

Wir wollen das obige JSON Beispiel unter dem Key Name work-srv-1.conf hinterlegen. Kopieren Sie
das Beispiel und fligen Sie es in Ihren Client als Content hinzu. Geben Sie als URL folgendes ein:

http://<Domdénen Namen oder IP>:3344/add/work-srv.conf

Dies kopiert Ihr JSON Dokument in den kvmstoreserver unter der Revisionsnummer 0. Als Antwort
erhalten Sie ein JSON Dokument, welches den Response Status 201 (Creadet) als Feld enthilt, eine
kurze Operationsbeschreibung sowie einen Text, welcher auf die aktuelle Revisionsnummer 0
verweist. Sollte etwas schiefgelaufen sein, wiederholen Sie die Schritte. Ursache des Fehlers konnte
ein Schreibfehler sein.

THEODOR BOGDANOVIC 91



l.Il"cu»ﬂ““e.:""e“ B’érufsblldung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u

Mochten Sie eine Korrektur nachspeichern, wie bspw. das JSON Feld system_active auf false setzen,
dann andern Sie jetzt den Value im JSON Dokument und rufen Sie nochmals den /add/ Controller,
wie oben beschrieben, auf. Nun haben Sie die erste Version als Revision 0 und die Korrektur als
Revision 1 gespeichert.

11.2.1.2 Eintrdge abrufen

Mochten Sie das soeben eingefligte Dokument komplett einsehen, bzw. die aktuellste
Revisionsnummer 1, dann geben Sie nachfolgendes in lhre Client URL-Adressleiste ein:

http://[<Domonen Namen order IP>:3344/get/work-srv.conf

Dies liefert lhnen das gesamte Dokument zurlick, so wie Sie es hochgeladen haben.

Mochten Sie die erste Version des gesamten Dokuments, welche unter der Revisionsnummer 0
hinterlegt ist, einsehen, missen Sie folgenden Aufruf durchfihren:

http://<Domoénen Namen order IP>:3344/get/work-srv.conf?rev=0

Nun erhalten Sie die erste Version des Dokuments, in welcher das Feld system_avtive noch auf true
steht.

Mochten Sie nur den Value des JSON Feldes system_active zuriickgeliefert bekommen, miissen Sie
den search Parameter benutzen:

http://<Doménen Namen order IP>:3344/get/work-srv.conf?search=system_active

Nun erhalten Sie einen Response zuriick, in welchem der Body nur den JSON Type false enthilt.
Dieser Case ist der am haufigsten verwendete in der Praxis, denn in der Regel méchte man lediglich
einen Konfigurationsparameter fiir ein Endsystem abrufen und nicht erst mit viel Aufwand den
Response Body parsen.

Nun mochten wir wissen, welchen Wert der Konfigurationsparameter system_active vor der
Korrektur hatte. Dieser liegt in der Revision 0.

http://[<Domo6nen Namen order IP>:3344/get/work-srv.conf?rev=0&search=system_active

Nun sollten wir als Ergebnis einen JSON Type true zurlickerhalten, denn diesen Wert hatte das Feld
bei der ersten Erstellung.

Die Reihenfolge der Parameter ist librigens egal. Search hatte auch als erster Query Parameter
deklariert werden kénnen. Lediglich die Parameter — Initialisierung «?» und die Deklaration der
Nachfolgeparameter «&» ist von der Reihenfolge her relevant.

THEODOR BOGDANOVIC 92



ﬂ%"ﬁ‘;;'"emé’grufsbildung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u

11.2.1.3 Eintrag entfernen

Nehmen wir an, dass unsere Konfiguration work-srv.conf nicht mehr benétigt wird. In diesem Fall
kénnen wir sie vom kvmstoreserver l6schen. Dazu muss erstens einmal der /del/ Controller
angesprochen werden und zweitens ein spezifisches JSON Dokument fir den Loschauftrag erstellt
und mitgegeben werden.

Eine solche Loschanforderung konnte dabei wie folgt aussehen:

http://<Domodnen Namen order IP>:3344/del/work-srv.conf

Dieser JSON Body muss noch mitgegeben werden:

{ w, ow

"key_name": "work-srv.conf",
"confirm_delete": true

}

Grundsatzlich muss jede Léschanweisung den URL Key Namen im JSON Feld key_name tragen. Dies
dient der Bestatigung seitens User oder Applikation, ob der Key grundsatzlich der richtige ist. Als
Sicherheitsmassnahme ist auch jede Loschanfrage mit confirm_delete zu bestatigen.

11.2.1.4 Allgemeine Informationen

Grundsatzlich sind auch Key Namen mit Leerschlag erlaubt. Auch ein breites Set an Sonderzeichen
wird unterstitzt. Dennoch wird empfohlen keine solchen Elemente im Key Namen zu verwenden. Als
allgemeine Richtlinie kdnnte gelten, was nicht in einem Windows Dateinamen erlaubt ist, sollte auch
nicht im Key Namen vorkommen.

11.2.1.5 Den Bindrbaum einsehen

Modchten Sie eine vom Binarbaum in einen Slice gemappte Ansicht des Baumes sehen, so rufen Sie
folgendes auf:

http://[<Domonen Namen order IP>:3344/tree

11.2.1.6 Versionsinformationen

Fiir allgemeine Informationen iber den kvmstoreserver, kdnnen Sie nachfolgendes eingeben. Als
kleiner Tipp, wenn Sie die Verfligbarkeit des kvmstoreserver monitoren méchten, bspw. mit Zabbix,
so kdnnen Sie diesen Aufruf fir periodisches Polling nutzen:

http://[<Domonen Namen order IP>:3344/version

THEODOR BOGDANOVIC 93



.“dc;'i?n‘;:': B'érufsblldung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u

11.2.2 Kvmstoreserver Konfiguration

Der kvmstoreserver kann grundsatzlich nur per Konfigurationsdatei konfiguriert werden. Diese liegt
nach der Installation im User HOME Verzeichnis des Users kvmstoreserver, unter
/home/kvmstoreserver/kvmstoreserver/etc/kvmstoreserver.conf. Méchten Sie hier Anderungen
vornehmen, dann loggen Sie sich als User kvmstoreserver mit dem Passwort, welches Sie bei der
Installation vergeben haben, ein und wechseln Sie ins oben angegebene Verzeichnis. Hier kdnnen Sie
mit einem Editor Ihrer Wahl die Konfigurationsdatei 6ffnen. Sie sehen dabei folgende Parameter, die
konfigurierbar sind:

11.2.2.1 storage_target

Hier wird der Pfad angegeben, in welchem der kvmstoreserver die JSON Files abspeichern kann.

11.2.2.2 serde_driver

Hier konnen Sie entscheiden, welcher Typ Speicher Backend verwendet werden soll. In dieser
Version steht nur der Filesystem Driver filesystem zur Wahl. Backend Driver fiir MSSQL und Postgres
koénnen in einer nachfolgenden Produktivversion folgen.

11.2.2.3 defualt_log _file

Der Pfad und Standard Name des Logfiles.

11.2.2.4 Log File Parameter

e Log_max_size_mb: Definiert wie gross das Log File in Megabyte werden darf.

e Log_max_age_days: Definiert wie alt das dlteste Log File sein darf, bevor es geldscht wird.

e Log_write_to_console: Schreibt die Applikationslogs parallel ins File und auf die Konsole.
Dieser Parameter steht per Default auf false und sollte nur zu Debugging — Zwecken aktiviert
werden. Das Schrieben auf die Konsole bedeutet bei einem Systemd Init System, dass die
Logs auch nach /var/log/syslog geschrieben werden. Dies kann syslog mit der Zeit tberfillen.

11.2.2.5 http Parameter

e http_hostname: Geben Sie hier den Domanennamen oder die IP ein, auf welche der
kvmstoreserver héren soll. Die Eingabe des Installers wurde hier hingeschrieben.

e http_port: Der kvmstoreserver hort standardmassig auf Port 3344. Wiinschen Sie einen
Portwechsel, kdnnen Sie hier einen neuen eingeben. Achtung: Ports unter 1024 kénnen nur
mit Root — Rechten genutzt werden!

e read_header_timeout: Definiert wie lange auf einen hiangenden Header (korrupter Header)
gewartet werden soll bzw. auf sein Ende. Angabe in Sekunden. Der Default Wert ist optimal
und sollte nicht geandert werden.

e read_timeout: Definiert wie lange ein Request Read dauern darf. Sollten extrem grosse JSON
Dokumente zum Einsatz kommen oder die Netzwerkverbindung zu langsam sein, sollte
dieser Wert (in Sekunden) zwingend erhoht werden.

e write_timeout: Definiert wie lange der kvmstoreserver in einen Response schreiben darf.
Auch hier gilt: Sind die JSON Dokumente sehr gross oder ist die Verbindung sehr trage,
zwingend den Wert (in Sekunden) erhéhen.

|

THEODOR BOGDANOVIC 94



.“dc;'i?n‘;:': B'érufsblldung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u

o tcp_idle_timeout_millsec: Dieser Wert definiert, wie lange der kvmstoreserver bzw. der OS
Kernel Network Stack, eine geschlossene TCP Verbindung als Socket Tupel aufrecht erhalten
soll. Haben Sie eine Umgebung, welche aus vielen Clients besteht, welche in langen
Intervallen auf den kvmstoreserver zugreifen, sollte dieser Wert klein gehalten werden (100
Millisekunden gelten als Optimum). Habe Sie hingen wenig Clients, die in kurzen Intervallen
wie bspw. alle 20 Sekunden, Zugriffe ausfihren, so ist ein Wert von 20 Sekunden bzw. 20'000
Millisekunden optimal.

11.2.2.6 Route Parameter

e ctrl_add_path: (Default: /add/); Hier kann der URL Pfad zum Hinzufiigen von Dokumenten
definiert werden.

e ctrl_get_path: (Default: /get/); Hier kann der URL Pfad zum Abrufen von Dokumenten
definiert werden.

e ctrl_del_path: (Default: /del/); Hier kann der URL Pfad zum Ldschen von Dokumenten
definiert werden.

e ctrl_tree_path: (Default: /tree); Hier kann definiert werden, wie der Pfad zum Btree-zu-Slice
Mapper lauten soll.

e ctrl_version_path: (Default: /version); Hier kann definiert werden, wie der Pfad zur
Versionsinfo lauten soll.

Hinweis: Die Pfadlange der add, get und del Controller ist auf 1 beschrankt. Konfigurationen wie
bspw. /controller/add sind nicht zugelassen, werden aber nicht als Fehler angesehen. Die
Funktionsweise des kvmstoreserver ist aber nicht mehr gewahrleistet. Auf eine Einschrankung wurde
bewusst verzichtet, da in einer zukiinftigen Produktivversion ein anderer Ansatz verfolgt werden soll.
Daher sollen an dieser Stelle keine Code spezifischen Restriktionen eingebaut werden, welche
nachtraglich wieder entfernt werden miissen. Zusatzlich MUSS jeder der genannten Controller mit
einem Backslash («/») enden. Der Grund ist der gleiche wie bei der Pfadlange.

11.2.2.7 STATIC und DYNAMIC

Diese Version ist mit der configPoller Erweiterung kompiliert worden. Dies bedeutet, dass alle
Anderungen an der Konfigurationsdatei in einem Intervall von 60 Sekunden (Hard Coded) erkannt
werden. Die erkannten Anderungen werden dann zur Laufzeit des kvmstoreserver geladen und sind
sofort aktiv. Dies gilt aber nicht fiir alle Parameter. In der Konfigurationsdatei sind Kommentar —
Tags, welche zeigen, ob der Parameter vom Typ STATIC oder Typ DYNAMIC ist. Ist ein Parameter vom
Typ STATIC, so werden die Anderungen erst nach einem Neustart der Applikation wirksam. Ist er
hingegen vom Typ DYNAMIC, werden sie wirksam, sobald der configPoller einen Prifintervall
anstosst und die Anderung wahrnimmt.

ACHTUNG: Sollte der Parameter fehlerhaft sein, also bspw. ein Buchstabe in einem Integer Wert
vorkommen, wird das Package configMap, welches fiir das Einlesen und die Zurverfiigungstellung der
Konfiguration verantwortlich ist, in eine PANIC laufen. Der kvmstoreserver wird CRASHEN!!!

THEODOR BOGDANOVIC 95



ﬂ%“‘;:'"emé’grufsbildung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u
15 Anhang

Nachfolgend befinden sich die zur Arbeit geh6hrenden Komponenten, Beschreibungen und
Informationen, welche aber nicht expliziter Bestandteil der eigentlichen Problemldsung sind.

Diese Komponente wurde im Verlauf der Arbeit entwickelt, um Connection — Belastungstests
durchfiihren zu konnen. Die Hauptaufgabe besteht hier explizit im Ausfiihren von Stresstests und
nicht im netzwerkseitigem Abfillen des kvmstoreserver mit Daten. Der inject_clinet ist als
Konsolenapplikation entwickelt worden und liegt dem beiliegenden Datentrager bei. Er wurde fir
Windows, Linux (Cross-Compiling, ungetestet) und MacOS X (Cross-Compiling, ungetestet)
kompiliert.

Inject_client wurde hauptsachlich auf der Plattform Windows entwickelt und eingesetzt. Es wird
empfohlen, ihn auch auf dieser Plattform einzusetzen. Linux hat hier Schwierigkeiten bei der
Erzeugung der hohen Anzahl an Socket — Files (Restriktion auf 1024 Files) und muss
dementsprechend zuerst um konfiguriert werden, damit der Client funktioniert. Die Nutzung auf
MacOS ist ganzlich ungetestet und die Funktionalitat unbekannt.

Inject_clinet versucht, bei jedem Aufruf per Konsole 6000 gleichzeitige Connections zum Target
aufzubauen und, beginnend ab Parametereingabewert, JSON Dokumente nach einem statischen
Pattern in den kvmstoreserver abzulegen. Die Felder des Dokumentes beinhalten dabei die
Datentypen String, Integer (Go intern Int64), Float64, Boolean und JSON NULL (Go nil). Die Werte
basieren alle auf der Laufnummer (Integer), welche inkrementell ab Startpunkt erhéht wird.

Die Restriktion auf 6000 Connections bzw. parallel ausgefiihrte goroutinen, resultiert aus der
Tatsache, dass ein Windows System ca. 16000 (+ ein kleiner Uberschuss) TCP Sockets 6ffnen kann
(mehr ist moglich nach Manipulation der Registry). Go bietet keine Moglichkeit, um den http Default
Client (Package) anzuweisen, die Connections zu schliessen. Windows halt die gedéffneten Sockets im
State wait_close ca. 4 Minuten lang, was bedeutet, dass in dieser Zeit keine weiteren Connections
erlaubt sind, wenn der Range aufgebraucht ist. Aus diesem Grund werden lediglich 6000 Connections
pro Aufruf getatigt. So kénnen zwei Durchldufe nacheinander getatigt werden, um eine
Durchschnittszeit zu erhalten.

Der inject_client liefert nach jedem erfolgreichen Durchlauf seine Gesamtlaufzeit sowie einen Print
des letzten Eintrages zwecks Uberpriifung. Ein moglicher Aufruf kdnnte dabei wie folgt aussehen:

Inject_client -target http://<Doménen Namen order IP>:3344 -start 10000

Der Parameterstart ist optional. Wird er nicht mitgegeben, so startet der Client immer bei O und geht
bis 5999. Sollen mehrere Revisionen Uber ein Set von Keys gelegt werden, muss der Client immer mit
der gleichen Startposition aufgerufen werden.

Hinweis: Sollte es zu Fehlern in goroutinen kommen, werden diese stets auf den aufrufenden
Standard Output der Konsole geschrieben. Mit Ctrl + c kann das Tool gestoppt werden.

THEODOR BOGDANOVIC 101



m:m;:'"e“ B’érufsblldung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u

Das Tool inject_disk wurde zwecks kvmstoreserver Loader Testing entwickelt. Der einzige Sinn dieses
Tools besteht darin, eine definierte Zahl an Files zu generieren, welche einen JSON Dokumentinhalt
besitzen. Das Design des JSON Dokumentes ist dabei eine Kopie des im inject_client eingesetzten
Patterns.

Mochte man den kvmstoreserver testen und hat keine Lust, manuell Daten einzuspielen oder gar
einen Testclient zu schreiben, kann dieses Kommandozeilen — Tool verwendet werden. Da keine
Obergrenze fir die Anzahl an zu erzeugenden JSON Objekten definiert ist, kann auch eine grosse
Anzahl erzeugt werden. Dies ist flr Tests nahe den Realbedingungen ideal geeignet und kann helfen,
die Skalierung der Maximalzahl an Dokumenten, welche unter Abschnitt 9.7.6 beschrieben wird,
besser zu bestimmen.

Ein moglicher Aufruf von inject_disk kénnte wie folgt aussehen:

Inject_disk -target /home/kvmstoreserver/kvmstoreserver/warehouse -objects 200°000

Inject_disk wird durch den Installer mitinstalliert und liegt unter
/home/kvmstoreserver/kvmstoreserver/utils/inject_disk. Wird er vor Ort oder innerhalb des Home —
Verzeichnisses des Users kvmstoreserver (mit seinen Rechen) ausgefiihrt, kann auf die Angabe des
Parameters -target verzichtet werden.

Dieser Client liegt ebenfalls in Versionen fir Windows, Linux und MacOs X vor.

THEODOR BOGDANOVIC 102



ﬁ%ﬁ‘;;"e“mé'g;‘ufsbildung
Uster

Key-Value Store in Go (Evaluationsprototyp kvmstoreserver) H B u

Moéchten Sie die Source Code Dokumentation in http Form sehen, kénnen Sie godoc benutzen.
Hierflr muss zuerst die Go Compiler Collection herunterladen und installieren werden:

https://golang.org/dl/

Nach der Installation missen Sie eine Eingabeaufforderung oder ein Terminal 6ffnen und folgendes
eingeben:

(Windows) - set GOPATH=<Pfad zum Datentriager>/raw_source_code

(Linux / MacOS) - export GOPATH=<Pfad zum Datentrager>/raw_source_code

Hiermit hinterlegen Sie die Umgebungsvariable zum Projekt. Anschliessend missen Sie folgendes in
die noch offene Eingabeaufforderung oder ein Termin eingeben:

godoc -http <IP / Domdnenname falls gewiinscht>:<Port beliebiger Wahl, empfohlen 3355>

Nun kénnen Sie einen Browser 6ffnen und die IP / Domanenname, falls angegeben, sonst
http://localhost:3355 aufrufen. Hier konnen Sie nach den Package — Namen suchen, die in diesem
Projekt verwendet wurden.

Falls Sie noch umfangreicher mit godoc arbeiten wollen, ist nachfolgender Link empfehlenswert:

https://godoc.org/golang.org/x/tools/cmd/godoc

THEODOR BOGDANOVIC 103


https://golang.org/dl/
https://godoc.org/golang.org/x/tools/cmd/godoc

