
FullOpenSourceVirtualization

Eine Virtualisierungsinfrastruktur auf Basis von pfSense, oVirt und GlusterFS

Eine Diplomarbeit von Bogdanovic Theodor für die Höhere Fachschule Uster,

in der Fachrichtung Telekommunikation

8. März 2016

Impressum

Der in dieser Arbeit enthalte textliche Inhalt sowie alle nicht spezifisch markierten Abbildungen,

Zeichnungen, Screenshots, Tabellen oder Befehlsboxen, welche nicht aus einem der hier enthaltenen

Produkte stammen, sind geistiges Eigentum des Autors (Bogdanovic Theodor). Alle sonstigen

genannten Produktnamen, Herstellernamen oder allgemein erwahhnte Namen welche in dieser Arbeit

genannt werden, unterstehen den jeweiligen Copyrights, Namensrechten oder sonstigen

urheberrechtlichen Rechten, welche der jeweilige Eigentuhmer definiert hat, auch wenn diese innerhalb

dieser Arbeit nicht spezifisch markiert sind.

Diese Arbeit steht bis zur endguhltigen Expertise seitens der Hohheren Fachschule Uster, am 2. April

2016 unter dem Lable Confidential. Nach genantem Datum, ist diese Arbeit im Sinne einer Anleitung

ohne Einschrahnkungen jeglicher Art frei nutzbar.

Danksagungen

Der Pruhfung dieser Arbeit auf korrekte Rechtschreibung, Grammatik und Stilistik soll an dieser Stelle

den nachfolgend genanten Korrekturlesern herzlichst fuhr ihre hervorragende und professionelle

Arbeit, in den jeweiligen Kapiteln gedankt werden:

Hugo Brändle, für die Korrekturlesung der Kapitel 1 bis 7

Claudia und Michael Gosswiler, für die Korrekturlesung des umfangreichen Kapitel 8

Bouillet Alexandre, für die Korrekturlesung der Kapitel 9 bis zum Ende

Diplomarbeit von Bogdanovic Theodor für die HFU II

Bogdanovic Theodor
Aabahchliweg 1
8854 Siebnen

Selbstständigkeitserklärung des Autor für dieses Werk und die damit verbundene Realisation

Der oben namentlich genante Autor dieser Dokumentation und allen damit verbundenen Arbeiten,

hinschlich der Realisierung des gesamten Projektes, erklahrt an dieser Stelle die absolute

Selbststahndigkeit der Umsetzung aller Schritte, die notwendig waren um diese Diplomarbeit fuhr die

Hohhere Fachschule Uster, nach den Anforderungen des Auftrages realisiert zu haben. Ausnahmen

bilden hier die obligatorische Korrekturlesung der Arbeit, zum alleinigen Zwecke der Pruhfung auf

Rechtschreibung, Grammatik und Stilistik der Rohfassung. Annderungen des Kontextes durch die

Korrekturlesung innerhalb der Rohfassung wurden weder zugelassen noch umgesetzt. Eine weitere

Ausnahme bildet an dieser Stelle die Montagehilfe der Hardwarekomponenten, hier speziell das

Konstruieren der vom Standard abweichenden Halterungen des Rack, durch Bogdanovic Gavrilo

welcher an dieser Arbeit beteiligt war.

Bogdanovic Theodor, Siebnen den 8. Mahrz 2016

--

Diplomarbeit von Bogdanovic Theodor für die HFU III

 1 Inhaltsverzeichnis

 2 Zusammenfassung/ Management – Summary..1
 2.1 Management – Summary..1

 2.1.1 Projektidee...2
 2.1.2 Erwähnenswerte Schwierigkeiten und unerwartete Probleme...2
 2.1.3 Lösungsansatz grob skizziert...2
 2.1.4 Erreichen der Zielsetzung..3
 2.1.5 Erfahrungen/ Erkenntnisse aus diesem Projekt..3
 2.1.6 Zeitaufwand (Soll- / Ist – Vergleich)..3
 2.1.7 Ausblick...3

 3 Einleitung...4
 3.1 Motivation zu diesem Projekt...4

 3.1.1 Wozu der ganze aufwand?...5
 3.2 Hinweise zur Dokumentation...6
 3.3 Aufgabenstellung – Der eigentliche Auftrag..7
 3.4 Einführung ins Projekt..9

 3.4.1 Das Netzwerksegment..9
 3.4.2 Das Virtualisierungssegment..10
 3.4.3 Das Storagesegment...12
 3.4.4 Allgemeine schematische Ansicht..13

 3.5 Das Vorgehen in groben Zügen...15
 3.5.1 PHASE: Initialisierung..15
 3.5.2 PHASE: Kurzer Umbau...15
 3.5.3 PHASE: Evaluierung des Grundaufbaus (gestützt auf Vorstudie).................................15
 3.5.4 PHASE: Evaluierung des Produktivsystems (gestützt auf Hauptstudie).......................16
 3.5.5 PHASE: Mögliche Umsetzung der Realisierung...17

 3.5.5.1 Installation und Konfiguration von pfSense...17
 3.5.5.2 Komponenten platzieren und verkabeln...17
 3.5.5.3 Einrichten des Storage (GlusterFS)..17
 3.5.5.4 Installation der oVirt – Node – Images..17
 3.5.5.5 Installation der oVirt Management Engine..17
 3.5.5.6 Vorsichtige Integration Teil 1...17
 3.5.5.7 Vorsichtige Integration Teil 2...18
 3.5.5.8 Konfiguration der oVirt spezifischen Infrastruktur..18
 3.5.5.9 Beginn Testreihe 1..18
 3.5.5.10 Beginn des Fine – Tuning des Clusters..19
 3.5.5.11 Beginn Testreihe 2..19

 4 Projektplan..20
 4.1 Projektplan des Monats Oktober...21
 4.2 Projektplan des Monats November Teil 1...22
 4.3 Projektplan des Monats November Teil 2...23
 4.4 Projektplan des Monats Dezember...24
 4.5 Projektplan des Monats Januar Teil 1...25
 4.6 Projektplan des Monats Januar Teil 2...26
 4.7 Projektplan des Monats Februar Teil 1...27
 4.8 Projektplan des Monats Februar Teil 2...28

 5 Pflichten..29
 5.1 Allgemeine Definition..29

 5.1.1 Sinn und Zweck...29
 5.1.2 Geltungsbereich...29

Diplomarbeit von Bogdanovic Theodor für die HFU IV

 5.1.3 Referenzierte Dokumente und Anleitungen...30
 5.2 Zielsetzung..30
 5.3 Wunschziele..33
 5.4 Abweichungen und Korrekturen...34

 6 Vorabklärungen und Analysen..35
 6.1 Zweck und Umfang der Vorstudie / Analysen..35
 6.2 Zielsetzung..35
 6.3 Zusätzliches..36
 6.4 Klärung der Netzwerksegment – Frage..36

 6.4.1 Einleitung..36
 6.4.2 Allgemeine Vorabklärungen..36
 6.4.3 Benötigte Funktionalitäten..37
 6.4.4 Der direkte Vergleich..37
 6.4.5 Auswertung des Resultates...38
 6.4.6 Reelle Umsetzung...38
 6.4.7 Anmerkung zur Analyse..39

 6.5 Klärung der Storagesegment – Frage..39
 6.5.1 Einleitung..39

 6.5.1.1 Wie könnte ein RAID 10 aussehen...39
 6.5.1.2 Wie könnte ein RAID 5 aussehen...41

 6.5.2 Welcher RAID – Level? (Nutzwertanalyse)...42
 6.5.2.1 Die notwendigen Auswahlkriterien..42
 6.5.2.2 Ermittlung des Gewichtungsfaktors für die einzelnen Kriterien (GWF)...............44
 6.5.2.3 Bestimmung des Zielerreichungsfaktors (ZEF)...45
 6.5.2.4 Ermittlung des Endergebnisses anhand der vorliegenden Fakten..........................46

 6.5.3 Auswertung des Resultats...46
 6.5.4 Reelle Umsetzung...46

 6.5.4.1 Kurzer Exkurs in Richtung Chunk Size...47
 6.6 Recherche und Marktanalyse..48

 7 Hauptstudie mit Konzeptvarianten...49
 7.1 Zweck und Umfang dieser Hauptstudie..49
 7.2 Entscheidungsfindung 1..49

 7.2.1 Einleitung..49
 7.2.1.1 Die notwendigen Auswahlkriterien..51
 7.2.1.2 Ermittlung des Gewichtungsfaktors für die einzelnen Kriterien (GWF)...............52
 7.2.1.3 Bestimmung des Zielerreichungsfaktors (ZEF)...53
 7.2.1.4 Ermittlung des Endergebnisses anhand der vorliegenden Fakten..........................54

 7.2.2 Auswertung des Resultats...54
 7.3 Entscheidungsfindung 2..55

 7.3.1 Einleitung..55
 7.3.1.1 Die notwendigen Auswahlkriterien...56
 7.3.1.2 Ermittlung des Gewichtungsfaktors für die einzelnen Kriterien (GWF)...............57
 7.3.1.3 Bestimmung des Zielerreichungsfaktors (ZEF)...58
 7.3.1.4 Ermittlung des Endergebnisses anhand der vorliegenden Fakten..........................59

 7.3.2 Auswertung des Resultats...59
 7.4 Schlusswort zur Umsetzung..59

 8 Realisierung / Aufbau eines virtualisierungs- Clusters..60
 8.1 Zweck und Umfang der Realisation...60
 8.2 Allgemeine Vordefinition..60
 8.3 Spezielles in Kürze...61
 8.4 Beginn mit der Realisation des Netzwerksegmentes..63

Diplomarbeit von Bogdanovic Theodor für die HFU V

 8.4.1 Die verwendete Hardware...63
 8.4.2 Beginn mit der Installation und Konfiguration von pfSense..63

 8.4.2.1 Konfiguration der Link Aggregationen...64
 8.4.2.1.1 Erstellen der Link Aggregation..64
 8.4.2.1.2 Einbinden der Link Aggregation..65

 8.4.2.2 Konfiguration der Einzelinterfaces...67
 8.4.2.3 Konfiguration des „Soft“- Switches..67

 8.4.2.3.1 Erstellen der Bridge..68
 8.4.2.3.2 Einbinden der Bridge..68

 8.4.3 Das Adress – Design...69
 8.4.4 Erster Blick auf die Sicherheit..70

 8.4.4.1 Die Members der Bridge...74
 8.4.5 Ein kleiner Abgleich zur Realität..75

 8.4.5.1 Die Firewall/ der gemanagte Switch...75
 8.4.5.2 Der konventionelle ungemanagte Switch..76

 8.5 Beginn mit der Realisation des Storagesegmentes...77
 8.5.1 Die verwendete Hardware...77
 8.5.2 Kurze Definition bezüglich des gewählten GlusterFS Designs......................................77
 8.5.3 Installation des CentOS 7..78

 8.5.3.1 Installation der notwendigen Softwarepakete...78
 8.5.3.2 Einrichten des RAID 5...79

 8.5.3.2.1 Erzeugen des Software RAID..79
 8.5.3.2.2 Erzeugen des Filesystems...81
 8.5.3.2.3 Bilden der GlusterFS Volumes...82

 8.6 Beginn mit der Realisation des Virtualisierungssegmentes..86
 8.6.1 Die Komponenten...86

 8.6.1.1 Die eigentlichen Virtualisierungsnodes...86
 8.6.1.1.1 Dell PowerEdge R810..86
 8.6.1.1.2 Supermicro (Superworkstation) Eigenbau aus Barebone...87
 8.6.1.1.3 Die baugleichen Fujitsu Primergy RX100 S7p..87
 8.6.1.1.4 Das Management Center, Supermicro Barebone 1HE...88

 8.6.2 Installation der oVirt Nodes..89
 8.6.3 Installation der oVirt Engine (Management Center)...90

 8.6.3.1 Installation des Grundsystems (CentOS 7)...90
 8.6.3.2 Installation der notwendigen Software..90

 8.6.3.2.1 Installation und Konfiguration von VDSM..90
 8.6.3.2.2 Installation des Management – Centers..93

 8.6.3.3 Einrichten der oVirt Engine (ovirt-engine-setup)..95
 8.6.3.3.1 Network Configuration...95
 8.6.3.3.2 Database Configuration..95
 8.6.3.3.3 oVirt Engine Configuration..95
 8.6.3.3.4 PKI Configuration..96
 8.6.3.3.5 Apache Configuration..96
 8.6.3.3.6 System Configuration...97
 8.6.3.3.7 Misc Configuration...97
 8.6.3.3.8 Abschlussbestätigung...97
 8.6.3.3.9 Abschliessende Bemerkung..98

 8.6.4 Abschluss der freischwebenden Einrichtung..98
 8.7 Viele Einzelteile ein Cluster...99

 8.7.1 Erstellung des Data – Centers...99
 8.7.2 Erstellung der Cluster..100

Diplomarbeit von Bogdanovic Theodor für die HFU VI

 8.7.3 Kurzer Exkurs zu SSH Soft Fencing...105
 8.7.4 Einbinden / Registrieren der einzelnen Nodes..106

 8.7.4.1 Einbindeprozess anhand der CentOS Minimalinstallation....................................106
 8.7.4.2 Einbindeprozess anhand eines oVirt – Node Images..109

 8.7.5 Einbinden des GlusterFS Volumes als Master Storage...110
 8.7.6 Einbinden des ISO_Store's per NFS..111
 8.7.7 Erstellen der Bondings für das Management – Netzwerk...113
 8.7.8 Erstellung des Netzwerkes für die VM's...117

 8.7.8.1 Kurzer Exkurs auf diverse Erklärungen..118
 8.7.8.1.1 Nicht erforderliche Netzwerke...118
 8.7.8.1.2 Netzwerk- seitiger Vergleich mit anderen Lösungen..118

 8.8 Abschluss des groben Teiles...119
 8.9 Die Finale Feinkonfiguration..120

 8.9.1 Die Ressourcenbegrenzung...121
 8.9.1.1 Setzen der globalen Werte...121

 8.9.1.1.1 Setzen des globalen QoS für den Speicherzugriff (Storage)..121
 8.9.1.1.2 Setzen des globalen QoS für den Netzwerkzugriff..123
 8.9.1.1.3 Setzen des globalen QoS für den CPU – Zugriff..124

 8.9.1.2 Verteilen der globalen QoS Profile..125
 8.9.1.2.1 Einbinden des QoS – Profils für die CPU – Limitierung...125
 8.9.1.2.2 Einbindung des QoS – Profils für die Netzwerklimitierung..126
 8.9.1.2.3 Einbindung des QoS – Profils für die Storagelimitierung..127

 8.9.2 Die erste VM...129
 8.9.2.1 Die einzelnen Konfigurationsschritte der VM – Erstellung..................................129

 8.9.2.1.1 Kategorie → Allgemein..129
 8.9.2.1.2 Kategorie → System...132
 8.9.2.1.3 Kategorie → Erste Ausführung..133
 8.9.2.1.4 Kategorie Konsole..133
 8.9.2.1.5 Kategorie → Host...134
 8.9.2.1.6 Kategorie → Hoch verfügbar...136
 8.9.2.1.7 Unterbruch zwecks eines kurzen Exkurses bezüglich Semi-Automatic-HA...................137
 8.9.2.1.8 Kategorie → Ressourcenzuteilung...139
 8.9.2.1.9 Kategorie → Bootoptionen...140
 8.9.2.1.10 Kategorie → Zufallsgenerator..140
 8.9.2.1.11 Kategorie → Benutzerdefinierte Eigenschaften...141
 8.9.2.1.12 VM – Erstellung, die virtuelle Disk...142

 8.9.2.2 Die erste fertige VM..143
 8.9.3 Eine Vorlage erstellen..144
 8.9.4 Positive und negative Affinitätsgruppen...146

 8.9.4.1 Erzeugen der neuen Cluster – Richtlinie...146
 8.9.4.2 Erzeugen der Affinitätsgruppen...149

 8.9.5 Exkurs zur Asymmetrie des Aufbaus..151
 8.10 User und Rechtemanagement...153

 8.10.1 Domäne in oVirt einbinden...153
 8.10.2 Einbinden der einzelnen User aus dem AD...154

 8.11 Vorläufiges Fazit zur Realisation..156
 9 Verifizierung der Funktionsfähigkeit..157

 9.1 Testumgebung...157
 9.2 Testreihe 1 Definitionen..158

 9.2.1 Parameter für die Testreihe 1..158
 9.2.2 Notwendige Tests für die Testreihe 1..158

Diplomarbeit von Bogdanovic Theodor für die HFU VII

 9.3 Testreihe 2 Definitionen..159
 9.3.1 Parameter für die Testreihe 2...159
 9.3.2 Notwendige Tests für die Testreihe 2..159

 9.4 Expliziter Ausschluss von möglichen Tests..160
 9.5 Beginn der Testreihe 1..161

 9.5.1 Testprotokoll: Trennen von Ethernet – Port (XOR – Mgmt – Net)..............................162
 9.5.1.1 Testprotokoll: Trennung von XOR – Bonding Port 1 bei gfsn1.mgmtdom..........162
 9.5.1.2 Testprotokoll: Trennung von XOR – Bonding Port 1 bei ovn3.mgmtdom...........163

 9.5.2 Testprotokoll: Trennen von VM – Netzwerk Port (LACP)...164
 9.5.3 Testprotokoll: Manuelles Fencing auf der theoretischen Basis von Semi-Automatic-HA
...167
 9.5.4 Testprotokoll: Trennen der Netzwerkverbindung der Engine im Betrieb.....................169

 9.6 Beginn der Testreihe 2..171
 9.6.1 Testprotokolle des Bereiches Netzwerk..172

 9.6.1.1 Testprotokoll: Funktionskontrolle des Switch (Bridge pfSense)...........................172
 9.6.1.2 Testprotokolle: Isolationsfähigkeit der Regelsätze..173

 9.6.1.2.1 Testprotokoll: Kein Zugriff auf privaten Sektor (LAN) von virtdom aus........................173
 9.6.1.2.2 Testprotokoll: Kein Zugriff auf mgmtdom von virtdom aus..174
 9.6.1.2.3 Testprotokoll: Kein Zugriff auf privaten Sektor (LAN) von mgmtdom aus....................175
 9.6.1.2.4 Testprotokoll: Kein Zugriff auf virtdom von mgmtdom aus..176

 9.6.1.3 Testprotokoll: Prüfung auf Anwendung von QoS auf das VM – Netzwerk..........177
 9.6.2 Testprotokolle des Bereiches Virtualisierung..178

 9.6.2.1 Testprotokoll: Prüfung auf Anwendung des CPU – QoS......................................178
 9.6.2.2 Testprotokoll: Nachweis der Live – Migration mit Miteinbezug des Maintenance
Mode...179
 9.6.2.3 Testprotokoll: Prüfung auf Anwendung der Affinitätsgruppen.............................180

 9.6.3 Testprotokolle des Bereiches Storage...181
 9.6.3.1 Testprotokolle zur Prüfung auf Verteilung der Daten innerhalb von GlusterFS.. .181

 9.6.3.1.1 Testprotokoll: Prüfung auf Verteilung der Daten des Master – Storage...........................181
 9.6.3.1.2 Testprotokoll: Prüfung auf Verteilung der ISO's auf beide Nodes...................................182

 9.6.3.2 Testprotokoll: Prüfung auf Anwendung von QoS auf Storage..............................183
 9.7 Auswertung der Testresultate im gesamten..185
 9.8 Beurteilung der Test in Relation mit dem fertigen Produkt..186

 10 Dokumentationen und Anleitungen..187
 10.1 Diese Dokumentation und ihr Status als Anleitung..187
 10.2 Die externen Dokumentationen..187

 11 Fazits und Abschlussbemerkungen...188
 11.1 Risikoeinschätzung zu den Versionen 3.5 und 3.6..188
 11.2 Erhalt des open source Geistes...188
 11.3 Abschliessendes Fazit zur Diplomarbeit...188

 12 Glossar und Verzeichnisse..189
 12.1 Glossar..189
 12.2 Abbildungsverzeichnis..190
 12.3 Tabellenverzeichnis...193
 12.4 Befehls- und Klickverzeichnis..193
 12.5 Quellenverzeichnis..194
 12.6 Bücherverzeichnis...194

 13 Beilagen..195

Diplomarbeit von Bogdanovic Theodor für die HFU VIII

FullOpenSourceVirtualization

 2 Zusammenfassung/ Management – Summary

 2.1 Management – Summary

Um zu demonstrieren, dass es mohglich ist einen Virtualisierungs – Cluster samt eigenstahndigen

Storage, mit allen Extras die heute uhblich sind auf reiner open source Basis zu errichten, wurde die

Idee zu dieser Diplomarbeit aufgegriffen. Das Ziel dieser Arbeit ist die Erstellung eines Clusters,

welcher eine bequeme und zentralisierte Bedienoberflahche bietet, mit deren Hilfe folgende Punkte

leicht und schnell realisiert werden kohnnen:

• Schnelles, vorlagenbasiertes Erstellen von virtuellen Maschinen

• Einfaches und schnelles Netzwerk – Management uhber GUI – basierte Werkzeuge

• Die Mohglichkeit Ressourcen – Pools zu bilden, um eine hohhere Anzahl an virtuellen Maschinen
innerhalb der Hosts zu realisieren. Dies sollte vorzugsweise ebenfalls schnell und leicht
mohglich sein.

• Die Bereitstellung eines zentralen und autonomen Storages, welcher eine grohsstmohgliche
Ausnutzung des Speichervolumens bietet, aber dennoch hohe Geschwindigkeiten bei der
Verwendung von Standard – Hardware – Komponenten ermohglicht.

• Die sich aus einem zentralisierten Storage bietenden Mohglichkeiten der Virtualisierung wie
etwa Live – Migration oder High Availability sollen so ermohglicht werden.

Fuhr die oben genannten Kern – Features gilt aber ein technischer Grundsatz. Es sollen nur Standard –

Komponenten verwendet werden, wie sie auch im uhblichen Desktop Computer Bereich anzutreffen

sind. Dies resultiert im klaren Verzicht auf teure Serverkomponenten wie Hardware basierte RAID –

Controller, Glasfaser – Komponenten im Netzwerkbereich, die Nutzung von teuren gemanagten

Switches oder eine sonstige Verwendung von Serverperipherie wie etwa SAS Festplatten.

Die verwendeten Kerntechnologien, welche aus dem heute grosszuhgigen open source Angebot hierfuhr

genutzt werden sind:

• pfSense: zur zentralisierten Anbindung des Netzwerks an die Aussenwelt. Wobei der FreeBSD
– Unterbau von pfSense an dieser Stelle nicht nur die typische Firewall Rolle, sondern auch die
Switching – Aufgaben eines gemanagten Switches uhbernimmt.

• oVirt: Als dreh und Angelpunkt sahmtlicher Konfigurationsmohglichkeiten der robusten
Kernelbasierten Virtualisierung die Linux heute anbietet.

• GlusterFS: Diese Variante der Verteilten Dateisysteme wird heute von RedHat propagiert und
dies aus gutem Grund. Die Mohglichkeiten an Kombinationen hinsichtlich Ausfallsicherheit und
beschleunigtem IO – Speed bilden das heutige RAID – System von Festplattenverbuhnden
beinahe 1:1 nach. Jedoch mit der Konkurrenz weit uhberlegenen Einfachheit bezuhglich
Konfiguration und Bedienung.

Beim Lesen des Realisierungkonzeptes kohnnte vielleicht der Eindruck entstehen, dass manche Ansahtze

gar nicht so viel billiger sind als eine „echte“ Lohsung. Dies kohnnte bei einigen Punkten tatsahchlich

zutreffen. Jedoch folgt der Autor dieser Arbeit dem Grundsatz „Alt ist nicht gleich schlecht“ was sich in

der Verwendung von Occasion – Hardware, hohheren Leistungsumfangs widerspiegelt die beim

Lieblingshahndler des Autors, „benno-shop.com“ erworben wurden. So kann das Konzept leistungsstark

zu guhnstigen Preisen dennoch eingehalten werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 1

FullOpenSourceVirtualization

 2.1.1 Projektidee

Die reine Demonstration der Mohglichkeit nur mit guhnstiger Standard Hardware einen Virtualisierungs-

Cluster zu erstellen ist nicht die einzige Motivation des Autors. Eine zweite treibende Kraft ist die

Notwendigkeit. Dieses Projekt ist keine Neuentwicklung fuhr den persohnlichen Produktiveinsatz,

sondern eine seit langer Zeit geplante Ablohsung eines bis dato bestehenden Xenserver 6.2 Clusters,

welcher hinsichtlich mangelnder Unterstuhtzung von diversen Betriebssystem – Varianten, schlechter

Bedienbarkeit und der teilweise nicht vorhandenen Funktionen nicht mehr tragbar ist. Somit soll

dieses Projekt ein leicht bedienbarer und robuster Ersatz des bestehenden Produktes werden, welches

dem Autor dieser Arbeit eine solide und selten zu wartende Plattform bietet fuhr das Bereitstellen

diverser Dienste.

 2.1.2 Erwähnenswerte Schwierigkeiten und unerwartete Probleme

In einer ersten Testphase, welche noch vor Einreichen des Antrages fuhr diese Diplomarbeit

durchgefuhhrt wurde, konnte die Installation von oVirt 3.5 einfach vollzogen werden. Da diese

Produktivversion aber in kleinen Segmenten weiterentwickelt wurde und Teile der erst heute

produktiven Version 3.6 als Standard integriert wurden, ahnderte sich diese eigentlich simple

Installation in eine Odyssee. Diese fuhhrte zum zeitraubenden Suchen in teilweise veralteten Tutorials

und Foren. Dennoch konnten, mit zugegeben grohsserem Zeitverlust, die meisten Probleme ermittelt

und behoben werden.

Ein schwerwiegenderes Problem war das High Availability, den dieses setzt nicht wie bspw. VMware

rein auf der Unberwachung vom Management – Center auf, sondern erfordert das Vorhandensein eines

Lights Out Management. Da dies aber nicht auf allen Hosts vorhanden ist und auch aus Sicht des Autors

ungern in Produktivsystemen genutzt wird, ist eine 100%-ige Implementierung des

vollautomatischen HA nicht mohglich. Eine „billigere“ semi – automatische Lohsung wurde hier gewahhlt,

welche im entsprechenden Punkt „8 Realisierung“ nahher erlahutert wird.

 2.1.3 Lösungsansatz grob skizziert

Aufbauend auf der Vorplanung, welche aus den Vorstudien und den Konzeptstudien hervorgegangen

ist, aber auch gestuhtzt auf die zur Verfuhgung stehenden Mittel sieht der Lohsungsweg wie folgt aus:

• Sequenz 1: Installation und Inbetriebnahme des Netzwerksegments. Dies beinhaltet die
Installation des pfSense – Systems als Firewall/Switch. Hinzu kommt die Planung und teilweise
Umsetzung der Verkabelung.

• Sequenz 2: Vorbereitung des Storage – System. Dies kann unabhahngig im Vorfeld vollzogen
werden. Die Installation beinhaltet auch die Sicherung der bis dato noch laufenden Xenserver –
Umgebung bzw. der noch benohtigten virtuellen Maschinen. Der hier grohsste Aufwand ist die
Extraktion der Festplatten aus dem bestehenden System sowie die Integration in den
zukuhnftigen RAID 5 Verbund. Eine kleine zeitliche Reserve, welche aber nirgends spezifisch
erfasst wurde, ist hier fuhr „nicht ganz ernst gemeinte“ persohnlichen Tests mit einer fuhr den
Autor neuen Technologie reserviert.

• Sequenz 3: Vorbereiten der Virtualisierungsumgebung. Dies beinhaltet die Installation des
Management Teils, die Installation der einzelnen Nodes sowie die Zusammenfuhhrung der
entsprechenden Komponenten.

• Sequenz 4: Beinhaltet die Zusammenfuhhrung sahmtlicher Komponenten zu einem aus einem
Guss wirkenden Komponente.

Diplomarbeit von Bogdanovic Theodor für die HFU 2

FullOpenSourceVirtualization

Dies ist eine kurze und grobe Beschreibung des allgemeinguhltigen Vorgehens bei der Realisierung

eines solchen Systems. Hier explizit ausgeschlossen ist die handwerkliche Arbeit welche zum Umbau

des Racks notwendig war. Auch nicht beruhcksichtigt wurde die Stilllegung des alten Xenserver –

Systems, welche teilweise schon vor Beginn dieser Arbeit initialisiert wurde.

 2.1.4 Erreichen der Zielsetzung

Aufbauend auf den Definitionen im Pflichtenheft, der gesetzten zeitlichen Rahmenfrist sowie des im

Vergleich zur Vorgahngerlohsung besseren Produktes, kann guten Gewissens die Erreichung der

Zielsetzung bestahtigt werden.

 2.1.5 Erfahrungen/ Erkenntnisse aus diesem Projekt

Aufgrund der doch erheblichen strukturellen Annderungen von oVirt 3.5 im Vergleich zur ersten

Testinstallation, welche noch vor Abgabe des Antrages dieses Projektes vorgenommen wurden, muss

ein erhohhter zeitlicher und nervlicher Mehraufwand zugegeben werden. Dies kann open source

Produkte mit reinem Community – Support in ein schlechteres Licht ruhcken als Produkte mit

kommerziellem Support. Doch macht dies aus Sicht des Autors dieser Arbeit genau den besonderen

Reiz aus, welcher das Erlernen neuer Technologien so besonders macht. Denn erst wenn man eine

Menge Arbeit und vor allem Nerven in eine Arbeit investiert hat, kann man sich uhber das Ergebniss

richtig freuen.

 2.1.6 Zeitaufwand (Soll- / Ist – Vergleich)

Da der Autor dieser Arbeit stets neben dem realen Zeitplan eine Negativreserve definiert, um auf diese

Weise sicherzustellen, dass manchmal sinnloser Zeitaufwand schneller kompensiert werden kann,

fallen die hohen zeitlichen Investitionen zur Problemlohsung an gewissen Stellen des Projektes nicht

schwer ins Gewicht. Im Gesamtuhberblick kann die geschahtzte und entsprechend gesetzte zeitliche

Rahmenfrist als akzeptabel definiert werden.

 2.1.7 Ausblick

Diese Dokumentation beinhaltet neben dem gesamten strukturellen Ablauf der Realisierung des

Projektes auch zahlreiche Illustrationen, welche helfen sollen das komplexe Gebilde, das einen solchen

Cluster ausmacht, besser zu verdeutlichen. Zusahtzlich bietet es neben dem eigentlichen Ablauf auch

einige speziell markierte Bereiche, welche auf zusahtzliche Infos, Kurztipps oder Alternativlohsungen

hinweisen. Diese „Extras“ sind fuhr die Realisierung dieser Arbeit nicht zwingend notwendig oder sie

weichen von den Vorstellungen des Autors stark ab. Jedoch sind es akzeptable und bereits evaluierte

Alternativen, die womohglich dem einen oder anderen helfen kohnnen, gewisse Stolpersteine im Vorfeld

zu erkennen. Somit kann diese Projektspezifische Dokumentation auch als allgemeine Installations-

und Bedienungsanleitung angesehen werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 3

FullOpenSourceVirtualization

 3 Einleitung

 3.1 Motivation zu diesem Projekt

Die Motivation zu diesem Projekt entsprang aus zwei Hauptargumenten. Das erste und vermutlich

wichtigste Argument ist die Tatsache, dass die bis dato bestehende Lohsung (Xenserver 6.2) als nicht

aktuell galt und dringend eines Updates bedurfte. Zusahtzlich zum Alter der bestehenden Lohsung kam

die Tatsache hinzu, dass nicht alle Beduhrfnisse hinsichtlich virtualisierbarer Betriebssysteme

abgedeckt werden konnten. In diesem Fall sei hier speziell auf Solaris bzw. den open source Fork

Openindiana verwiesen. Ein weiterer schwerwiegender Nachteil in der bestehenden Lohsung war die

schlechte Kompatibilitaht zwischen den unterschiedlichen Prozessor – Familien. So ist es nur mit

erheblichem Aufwand mohglich zwei Systeme mit unterschiedlichen Prozessor – Generationen in einen

Pool zu vereinen, um so Live – Migration zu ermohglichen. Da wie bereits erwahhnt ein Upgrade nohtig

wurde und auch die Mohglichkeit seitens Xenserver mit Version 6.5 da war, musste man sich schon die

Frage stellen ob dies angesichts der oben aufgezahhlten Mahngel seitens Xenserver lohnenswert wahre.

Zwar ist der Autor ein grosser Bewunderer des Xen – Verfahrens als Hypervisor und teilt die Meinung,

dass dies der einzig wahre Typ 1 Hypervisor auf dem Markt ist. Jedoch ist die Entwicklung rund um

Xen und speziell um Xenserver als Gesamtprodukt in den letzten Jahren etwas ins Stocken geraten.

Zusahtzlich muss man aber auch sagen, dass KVM (Kernel-basierte Virtualisierung, Linux) hinsichtlich

der Tatsache dass es sich um ein Zwischending von Typ – 1 und Typ – 2 Hypervisor handelt, nur

insoweit sicher ist, als dass die Mandatory Access Control (MAC), welche uhber SELinux (Security-

Enhanced Linux) realisiert ist, auch funktioniert. Ob die SELinux Rules aber auch eine 100%-ige

Isolation gewahhrleisten, kann heute nur schwer nachvollzogen werden, da die Regeln eine so hohe

Komplexitaht erreicht haben, dass von manuellen Eingriffen dringendst abzuraten ist. Was aber heute in

der Virtualisierung oberste Prioritaht geniessen tut und auch der ausschlaggebende Punkt des Autors

war um dennoch auf KVM zu setzen, ist die hohe Anzahl an erstklassigen Management – Systemen

welche dem Hypervisor erst seine wahre Macht verleihen. Unter alle Produkten sticht oVirt aus zwei

gruhnden besonders hervor:

• Es ist die Entwicklungsplattform von RedHat, somit ist ein hoher Standard zu erwarten, wobei
aufgrund der langen Produktlebenszyklen von RedHat Produkten auch mit einem langen LTS
(Long term support) seitens Community zu rechnen ist.

• Es ist ein Rundumpaket. Man bekommt alle Funktionen so, wie sie auch das kommerzielle
Produkt enthalten sind.

Zu Punkt zwei kohnnte man nun gegen- argumentiert , dass dies auch bei anderen Herstellern der Fall

ist und man wahre auch im Recht mit dieser Aussage. Jedoch versucht RedHat ahhnlich wie SuSE die

Installation, wie auch die Konfiguration mohglichst leicht zu halten und entwickelt daher eine Vielzahl

an Assistenten und GUI's welche einem die Arbeit erleichtern oder gar teilweise abnehmen. All diese

Werkzeuge stehen einem dann auch zur Verfuhgung. Hersteller wie Proxmox mit Virtual Enviroment

liefern zwar gute Produkte, jedoch sind nicht sahmtliche Funktionen bequem per GUI handlebar, da die

Werkzeuge schlicht fehlen oder nur im kommerziellen Produkt erhahltlich sind. Einfach gesprochen,

oVirt beherrscht alles out of the box und ermohglicht dem Entwickler mit seiner breiten Unterstuhtzung

an mohglichen Konfigurationsmohglichkeiten die freie Wahl. Zusahtzlich ist es die momentan einzige

Implementierung, welche standardmahssig auch GlusterFS als Speicherdomahne sauber integriert. An

dieser Stelle sei noch gesagt, dass der Autor dieses Werkes ein grosser Fan dieser Technologie

geworden ist und es wahrscheinlich auch bleiben wird.

Diplomarbeit von Bogdanovic Theodor für die HFU 4

FullOpenSourceVirtualization

 3.1.1 Wozu der ganze aufwand?

Nun kohnnte man sich fragen wozu den der ganze Aufwand gut sein soll, wenn man doch heute fuhr

wenig Geld ganze Infrastrukturen beim Hoster seiner Wahl haben kann. Diese Frage mag sicherlich

zutreffen wenn man sich die hohen Kosten bezuhglich Hardware, Stromrechnung, Zeitaufwand oder die

zu investierenden Nerven, wenn es mal wieder Anrger gibt, in Betracht zieht. Sieht man sich aber die

Freiheiten die man mit einer eigenen Infrastruktur hat, dann sieht die Situation wieder anders aus.

Betrachten wir mal folgende Punkte:

• Man kann selber so viele VM's haben wie man will (oder die Infrastruktur hergibt)

• Man bezahlt seinen eigenen Internetanschluss; Stichwort: „unlimitiert“ Traffic

• Die Infrastruktur kann so aussehen wie man es selber mohchte und nicht so wie sie einem
aufgezwungen wird; Stichworte: Distribution, Versionen, Interpreter diverse Kombinationen
der genannten Punkte

• Ressourcen – Limitierung (CPU, RAM, Network, etc.) wie man es selber fuhr richtig hahlt.

• In Verbindung mit dem oberen Punkt, kein „garantiert so und so viel von dem oder dem“,
sondern klare Verhahltnisse, man weiss wo das Maximum liegt und ob es auch wirklich so ist.

• Man kann das nutzen was man will. Mohchte ich ein FreeBSD anstelle einer Linux Distribution
um bspw. Eine Ruby on Rail Infrastruktur zu betreiben, dann installiere ich und suche nicht
erst lange nach einem Hoster der auch FreeBSD unsterstuhtzt.

• Und wohl der wichtigste Punkt von allen. Ich weiss stets wo meine Sachen gehostet sind und
muss mich nicht fragen wie genau es der Hoster mit nimmt; Stichwort: NSA Affahre

Wenn man sich diese stark abgekuhrzte Liste an Vorteilen einmal ansieht, dann ist der Autor dieser

Arbeit der Meinung, solltn alle Nachteile einem wie nichts vorkommen.

Ein weiterer Vorteil, aber auch nur wenn man genuhgend Kapazitahten zur Virtualisierung besitzt, ist die

Tatsache, dass man immer eine VM zur Verfuhgung hat. So kam es auch des ohfteren vor, dass man von

Freunden oder seinen Kommilitone angesprochen wurde, ob man doch noch eine VM schnell zum

testen oder fuhr eine Arbeit haben kohnnte.

Diplomarbeit von Bogdanovic Theodor für die HFU 5

FullOpenSourceVirtualization

 3.2 Hinweise zur Dokumentation

Der besseren Lesbarkeit halber, aber auch um den Anspruhchen einer Anleitung gerecht zu werden,

nutzt diese Dokumentation folgende Darstellungsoptionen um die unterschiedlichen Kontexte besser

zu differenzieren:

Kurzer Hinweis bezuhglich strukturellem Aufbau dieser Dokumentation: Diese Dokumentation ist in

drei Teilbereich gegliedert und zwar in ein Netzwerksegment, ein Virtualisierungssegment und ein

Storagesegment. Diese Reihenfolge stellt einen logischen Konstruktionsweg dar, der sich auch in der

Dokumentation widerspiegeln sollte. Da aber ein solcher Virtualisierungscluster als ein Element

funktionieren soll, kann es vorkommen, dass einige Bereiche hinsichtlich dieser logischen Trennung

dennoch miteinander verschmelzen.

Diplomarbeit von Bogdanovic Theodor für die HFU 6

Hier drin stehen Befehle oder Kon�gura�onen die an einem bes�mmten Punkt in die

 Kommandozeile eingegeben werden müssen.

Beginnen die Zeilen wie diese mit einem „#“ dann muss man als root eingeloggt sein.

$ Beginnen sie jedoch mit einem „$“ dan genügt ein regulärer User.

TIPP

In diesen Felder stehen hilfreiche Tipps, welche nicht vorschreiben wie es gemacht werden

muss, aber meistens macht es Sinn ihnen zu folgen um schnell, an nutzbare Ziel zu gelangen.

ALTERNATIVE

In diesen Feldern wird auf mögliche Alterna v – Kon#gura onen verwiesen, welche kurz

getestet wurden aber für den restlichen Verlauf dieser Dokumenta on nicht mehr

berücksich gt werden können. Achtung: Es wird wirklich nicht mehr darauf eingegangen, wer

diese Op on wählt muss danach selber schauen wie es weitergehen könnte.

ACHTUNG!

Was hier drinnen steht wurde meist durch den Autor dieser Arbeit einmal angewendet und

endete im Chaos, geis ger Verwirrtheit oder einer langen Suche über google um den Fehler

zu #nden. Den Anweisungen in diesen Feldern, sollte auf jeden Fall gefolgt werden!

FullOpenSourceVirtualization

 3.3 Aufgabenstellung – Der eigentliche Auftrag

Der eigentliche Auftrag, wie er dem Studenten seitens der HFU gestellt wurde ist nachfolgend als

Abbildung aufgefuhhrt. Die Darstellung als Abbildung dient der Sicherheit des Auftrages, um

Verfahlschungen des Inhaltes auszuschliessen.

Seite 1:

Diplomarbeit von Bogdanovic Theodor für die HFU 7

Abbildung 1: Kopie des Auftrages Seite 1

FullOpenSourceVirtualization

Seite 2:

Diplomarbeit von Bogdanovic Theodor für die HFU 8

Abbildung 2: Kopie des Auftrages Seite 2

FullOpenSourceVirtualization

 3.4 Einführung ins Projekt

Der Aufbau eines Virtualisierungsclusters ist technisch gesehen der Aufbau einer konventionellen IT –

Infrastruktur. Es muhssen alle Ressourcen analysiert werden. Die entsprechenden Komponenten

muhssen so dimensioniert werden, dass sie der erwarteten Belastung standhalten und es muss

natuhrlich auf die hardwareseitigen Ressourcenzuteilungen geachtet werden. Bei Virtualisierungs-

Infrastrukturen ist noch zusahtzlich auf das gleiche innerhalb der virtuellen Infrastruktur zu achten, wie

bspw. virtuelle Netzwerke oder die Nutzung der Rechenressourcen wie CPU und RAM. Dieses Projekt

soll ausschliesslich mit open source Produkten und kostenguhnstigen Standard Hardwarekomponenten

realisiert werden. Dies bedeutet bspw. den Verzicht auf teure hardwaregestuhtzte RAID – Controller

oder die Verkablung mit 10 Gbit – Komponenten (Glas, Kupfer). Sollten Komponenten notwendig

werden die nicht als „Standard“ Computer – Komponenten gelten, wie bspw. 4-Port 1Gbit

Netzwerkkarten, so werden diese als kostenguhnstige Gebrauchtware organisiert.

Aufbauend auf den oben genannten Forderungen werden fuhr die Kernkomponenten folgende drei

Hersteller/ Produkte gewahhlt:

 3.4.1 Das Netzwerksegment

PfSense soll an dieser Stelle die zentrale Rolle des Netzwerkkonten uhbernehmen, wobei hier auch

Aufgaben der Bereiche Switching und Firewall abgedeckt werden kohnnen. Diese Aufgabe uhbernimmt

ein altes IBM System, welches mit vier kostenguhnstigen 4-Port Netzwerkkarten (gebraucht, Preis pro

Komponente 60 CHF.) bestuhckt ist und so mit den beiden On-board Ports auf ein Total von 18

Steckplahtzen kommt. Hier kann also auf den Kauf eines teuren gemanagten Switches verzichtet

werden, da sich die Ports in eine Bridge binden lassen und somit Switching - Funktionen replizierbar

sind. Diese Konfiguration mag auf den ersten Blick nicht als vollwertiger Switch – Ersatz wirken,

jedoch sind folgende Mohglichkeiten damit realisierbar und werden auch so angewendet:

• Bildung von Link Aggregation (Protokoll LACP IEEE 802.3ad) um mehrere Links zu den

grossen Maschinen zu generieren.

• Bildung einer Bridge, welche die autonomen Links (Pseudo- Links) zu einem „Geraht“

zusammenschliesst um nach aussen wie ein Switch zu wirken.

• pfSense erlaubt auch nach der Bildung von Pseudo- Devices wie LAGG – Interfaces (LACP) die

Anwendung von eigenstahndigen Firewall – Rules fuhr solche Interfaces.

• Bilden von VLAN's oder Tunk's ist ebenfalls auf jedes Interface anwendbar, belanglos ob das

Device in einer Bridge eingebunden ist oder nicht. Die Konfigurationen bleiben allgemein

autonom anwendbar. Jedoch wird hier auf die Segmentierung mittels VLAN verzichtet.

• Mittels des pfSense eigenen RRD Graphen – Systems ist auch ein Monitoring der Datenmengen

mohglich wie es bspw. auch bei Cisco – Gerahten mohglich wahre.

Betrachtet man alle Mohglichkeiten die einem mit dieser Lohsung zur Verfuhgung stehen, so kann man

behaupten, dass dies ein vollwertiger Switch – Ersatz ist, welcher auch noch den Komfort bietet

sahmtliche Konfigurationsmohglichkeiten (Firewall und Switch) an einem Punkt zu vereinen.

Dieser pfSense „Switch“ dient nur der Kommunikation der VM's mit der Aussenwelt. Firewall – Regeln

Diplomarbeit von Bogdanovic Theodor für die HFU 9

FullOpenSourceVirtualization

werden an dieser Stelle die Kommunikation zwischen den virtualisierten Teilen zur Cluster – internen

Kommunikation unterbinden.

Eine zusahtzliche Komponente dieses Segmentes ist ein ungemanagter Switch (Tenda 24-port, 1Gbit)

aus altem privatem Lagerbestand. Er ist der zentrale Knotenpunkt fuhr die interne Kommunikation des

Clusters. Dies beinhaltet die Storage- sowie die Management – Kommunikation und soll so den Cluster

vom Public – Teil der Vm's isolieren. Firewall – Regeln verhindern die Kombinationen der

Virtualisierungs- Nodes und der Storage – Nodes zur Aussenwelt. Nur zu Update – Zwecken wird diese

spezielle „Update – Rule“ deaktiviert. Ansonsten soll sie die interne Kombinationen zur Aussenwelt

strickt unterbinden.

 3.4.2 Das Virtualisierungssegment

oVirt 3.5: Um allen Anspruhchen eines heute modernen Virtualisierungs- Systems gerecht zu werden,

wurde oVirt in der Version 3.5 (zu Projektbeginn die aktuellste Version) gewahhlt. Es bietet alle

Werkzeuge die heute in dieser Branche notwendig sind und buhndelt sie in eine grohsstenteils einfach zu

bedienende Weboberflahche, welche auch optisch gut aussieht. Was auch noch positiv zu Buche schlahgt

ist die Tatsache, dass es die Grundlage des RedHat Virtualization Enterprise Servers ist. Man kann also

von einer stabilen und Produktreifen Software sprechen.

oVirt ist ahhnlich wie Vmware's Lohsung auf ein Management – Center (genannt oVirt – Engine) und

eine unbestimmte Anzahl an Virtualisierungs- Konten ausgelegt. Abweichend von der heute uhblichen

Vorgehensweise, soll die oVirt – Engine nicht als VM innerhalb des Clusterters arbeiten, sondern als

eigenstahndige Instanz auf einem Barebone System (Supermicro) installiert sein.

Fuhr die Hosts wird das vom oVirt Projekt fuhr jede Version erzeugte oVirt – Node Image verwendet.

Diese Image basiert auf CentOS und ist eine stark abgespeckte Version einer ohnehin minimalen

CentOS – Minimal – Instllation. Sie bietet den Komfort eines bereits fertigen und leicht installierbaren

Systems. Sowohl das fertige Image wie auch eine CentOS Minimal – Installation bieten hinsichtlich

Sicherheit die gleichen Features, wie aktives und vorkonfiguriertes SELinux oder eine per Default

aktive Firewall. Jedoch ist das Image klar zu bevorzugen, da es noch stahrker abgespeckt ist und bspw.

auf eine Vielzahl an Userland Tool wie adduser (neu User unter Linux anlegen) verzichtet. Dies macht

das Image einerseits etwas sicherer und reduziert den notwendigen Diskspace auf das absolute

Minimum.

Diplomarbeit von Bogdanovic Theodor für die HFU 10

ALTERNATIVE

Einst als tes ng markiert, wurde die Funk on Hosted-Engine-HA rückpor ert von Version 3.6

auf 3.5 und erlaubt so die Engine als VM innerhalb des Clusters zu betreiben. Hierbei wird

aber der Ac ve – Zustand der Engine von den Nodes selber überwacht und im Fehlerfal

eines Nodes die Engine einfach auf einem neuen Node neu gestartet.

FullOpenSourceVirtualization

Der virtualisierungs- spezifische Hardware – Teil hat dabei folgende Konfiguration:

• Subermicro Barebone System: Hierauf ist die oVirt – Engine 3.5 installiert. Der Server ist mit

einem 1Gbit – Link an den ungemanagten Switch angeschlossen, wobei hier keine

netzwerkseitige Ausfallsicherheit als notwendig angesehen wird. Link Aggregation wuhrde auch

keinen Sinn machen, da ein 1Gbit – Link fuhr die Management – Funktionen vohllig ausreicht.

• Dell PowerEdge „Occasion Gerät“: Auf diesem Geraht ist ein fertiges oVirt – Node -Image

installiert (Version 3.5). Zusahtzlich zu vier On-board Etherports wurde noch eine Vierport –

Netzwerkkarte installiert. Diese Maschine zahhlt zu den grossen Einheiten des Clusters und

wurde mit drei Ports (LACP) an pfSense angebunden um den VM's Netzzugang zu ermohglichen.

Zwei Etherports sind in eine Link Aggregation gebunden, nutzen aber den Linux

softwareseitigen Bonding Mechanismus Mode 2 (Balanced XOR), um die interne Cluster –

Kommunikation zu ermohglichen. Diese Konfiguration ist notwendig, da die Links auf einen

ungemanagten Switch zeigen, welcher Link Aggregation nicht unterstuhtzt.

• Subermicro Barebone System: Dieser Server zahhlt auch zu den grossen Maschinen und hat

eine identische Konfiguration wie der Dell PowerEdge.

• 2x Fujitsu Primergy: Diese beiden Server sind mit je einem Intel Xeon E3 Prozessor und je 8

GB RAM als mittelstarke Maschinen einzustufen. Ihre Konfiguration hinsichtlich Cluster –

Kommunikation ist wie bei allen Node – Konfiguration identisch. Da sie aber vom

Leistungsumfang eher in die Sparte bescheiden einzustufen sind, ist mit keiner grossen VM

Anzahl zu rechnen. Aus diesem Grund wird auf eine Link Aggregation mit je drei Links im LACP

– Verbund verzichtet. Sie besitzen daher nur je einen 1Gbin – Link zu pfSense.

Die oVirt spezifischen Konfigurationen wie Hostnamen, interne Strukturen wie Datacenter oder die

verwendeten Cluster sind zu umfangreich fuhr diesen Bereich. Sie werden unter Punkt 8 „Realisierung“

genauer betrachtet.

Diplomarbeit von Bogdanovic Theodor für die HFU 11

ACHTUNG!

Das fer ge Image schränkt der Sicherheit halber den Zugang zur reinen Command Line

absolut ein, nur die Kon#gura onskonsole ist erreichbar. Möchte man zusätzliche So8ware

installieren wie bspw. einen Zabbix – Agent, so ist dies nicht möglich!

FullOpenSourceVirtualization

 3.4.3 Das Storagesegment

Das Storage System ist die aus Sicht des Autors dieser Arbeit, wohl das wichtigste Kernstuhck. Dies

beruht auf der Tatsache, dass die abgelohste Xenserver Lohsung eine zu dieser Zeit aus finanziellen

Gruhnden „guhnstigere“ Lohsung darstellte. Die Festplatten, die nun in der aktuellen Lohsung arbeiten,

waren zuvor in einem Virtualisierungs- Node untergebracht und mussten muhhsam von Hand integriert

werden. Dies erschwerte auch das Updaten der Vorgahngerlohsung, was zur Folge hatte, dass auch keine

gemacht wurde. Im neuen Design ist das Storage System ein autonomer Teil, bestehend aus folgenden

Komponenten:

• 2x HP Proliant Microservern der 8-ten Generation: Diese Gerahte bieten sich gerade zu an

als NAS oder eine sonstige Storage Variante zu arbeiten. Denn sie sind extrem preisguhnstig (je

nach Ausstattung), sie bieten bis zu vier Festplatten – Slots (leider nicht Hot-Swap fahhig) an

und es sind echte Serversysteme. In diesem Projekt werden zwei Microserver in einen Verbund

gespannt, welcher mittels der open source Software GlusterFS (Background Daemon) ihre

Zielverzeichnisse als einen gemeinsamen Gluster – Mountpoint anbieten. Die Zielverzeichnisse

befinden sich auf einem Software – RAID – Verbund des Typs 5 mit je vier Disks. Dieser RAID –

Level liefert das beste Ausfall – zu – Speichervolumen Verhahltnis, welches mit vier Disks

erreicht werden kann. Jedoch ist der Volumenverlust basierend auf dem RAID 5 erheblich. Bei

4 Disks pro Server mit einer Speicherkapazitaht von 1,8 TB pro Disk, stehen nach dem bilden

des RAID gerade einmal 5,5 TB zur Verfuhgung.

Da GlusterFS mittels Replizierung der Volumes auf mehrere Nodes nahezu jeden klassischen RAID

Level nachbilden kann, wahre es sinnvoll diese Technik der Ausfallsicherheit auch zu nutzten. Da aber

nur zwei Nodes zur Verfuhgung stehen und der Diskspace durch den eingesetzten RAID – Level massiv

beschnitten wird, wurde auf eine Ausfallsicherheit zu Gunsten eines hohheren Diskspaces verzichtet.

Auf diese Weise kann zwar nicht der Ausfall eines Nodes kompensiert werden, jedoch wenigstens noch

der Ausfall einer Disk pro Node.

Um den Diskspace zu maximieren und die doch etwas leistungsarmen Microserver zu schonen, wird

ein klassischer GlusterFS Mountpoint des Typs Distributed gewahhlt. Dies bedeutet, dass die Disk –

Images welche von den virtualisierungs- Nodes fuhr die VM's erzeugt werden, als ein einziges File nach

dem Zufallsprinz stets auf den einen oder den anderen Storage – Node schreiben werden. Durch diese

Konstellation konnte ein Mountpoint erschaffen werden, welcher eine ungefahhre Speicherkapazitaht

von 11 TB besitzt.

Ein zweiter GlusterFS Mountpoint, welcher aber nach aussen hin als NFS – Mountpoint ersichtlich ist,

dient dem ganzen Cluster als ISO_Storage_Domahne. Diese spezielle Gluster – zu – NFS Kombination

wird dadurch ermohglicht , dass GlusterFS native NFS Protokoll – Unterstuhtzung implementiert hat. So

nutzen zwar Master Storage und ISO Domahne den gleichen RAID 5 – Verbund, jedoch ist dies ein

absolut tragbarer zustand, da bei 11 TB genuhgend Speicherplatz fuhr Images und ISO's vorhanden ist.

Diplomarbeit von Bogdanovic Theodor für die HFU 12

FullOpenSourceVirtualization

 3.4.4 Allgemeine schematische Ansicht

Des besseren Verstahndnisses halber und um einen ersten Eindruck bezuhglich Aussehen und Struktur

des Aufbaus zu ermohglichen, folgen nun zwei Schemen mit den primahren Sichtweisen des Projektes.

Anbindung des Management- und Storage – Teils:

In dieser Abbildung ist deutlich zu erkennen wie die gesamte Verkablung fuhr den Management- sowie

fuhr den Storage – Teil isoliert auf den Tenda 24-Port Switch gefuhhrt wird. Dabei wird stets eine Link

Aggregation nach Balanced XOR verwendet. Zweimal pro Geraht resultiert hierbei aus der kleinsten zur

Verfuhgung stehenden Menge, welche die beiden Microserver definieren mit je nur zwei

Anschlussmohglichkeiten. Hier ruhber kann der gesamte Management- und Storagezugriff ausfallsicher

abgewickelt und zugleich die Gesamt – Bandbreite um den Faktor zwei erhohht werden. Der rot

markierte Bereich „Gemanagte Verbindung“ ermohglicht der oVirt – Engine den bidirektionalen Zugriff

ins Internet, wobei Regelsahtze in der Firewall verhindern dass die Restliche Infrastruktur nach aussen

kommunizieren kann. Hier sieht man auch deutlich die dezentrale Arbeitsweise von GlusterFS. Die

Nodes arbeiten zwar als gemeinsamer Verbund, jedoch ist keine spezielle Verkablung untereinander

Diplomarbeit von Bogdanovic Theodor für die HFU 13

Abbildung 3: Schematischer Hardware – Aufbau aus Sicht des Management- und Storage – Teils

FullOpenSourceVirtualization

notwendig, sie verhalten sich nach aussen wie zwei autonome Hosts.

Anbindung des Virtual Enviroments:

In dieser Ansicht ist zu erkennen, dass keine physische Verbindung zwischen den virtuellen Maschinen

und dem Cluster – Netzwerk besteht. Ein Routing durch pfSense wahre technisch denkbar, jedoch gibt es

kein vorstellbares Szenario wo dies Sinn machen wuhrde. Daher kohnnen simple Regeln in pfSense

definiert werden, welche bidirektional „deny all“ lauten.

Diplomarbeit von Bogdanovic Theodor für die HFU 14

Abbildung 4: Schematischer Hardware – Aufbau aus Sicht des Virtual Enviroments

FullOpenSourceVirtualization

 3.5 Das Vorgehen in groben Zügen

An dieser Stelle folgt eine grobe Zusammenfassung eines mohglichen Projektablaufes. Diese

Zusammenfassung ist der besseren Darstellung halber in Phasen aufgeteilt, welche versuchen den

Projektablauf in seinem zeitlichen Ablauf zu widerspiegeln. Da an diesem Projekt in jeweils kurzen

Zeiteinheiten, verteilt uhber einen langen Zeitraum gearbeitet werden soll, kann es vorkommen dass

einige Phasen in ihrer Reihenfolge schwer nachvollziehbar sind.

Einige Teile wie bspw. der Umbau des Racks oder die Sicherung der VM's des alten Clusters werden

hier aus Platzgruhnden nicht spezifisch erwahhnt.

 3.5.1 PHASE: Initialisierung

Nach Erhalt der Auftragsbestahtigung seitens der HFU, wurden alle vorhandenen und notwendigen

Parameter nochmals uhberpruhft. Nach positiver Unberpruhfung der Parameter und Bedingungen, wurde

basierend auf dem Aufgabenplan des Antrages versucht einen ersten Grobentwurf fuhr das

Zeitmanagement zu erstellen. Hierbei wurde versucht die notwendige Zeit, welche fuhr die

Realisierung des Projektes veranschlagt wurde, in Einklang mit der verfuhgbaren Zeit zu bringen.

 3.5.2 PHASE: Kurzer Umbau

Noch vor Beginn der eigentlichen Planung, welche sich auf die Vor- und Hauptstudien stuhtzt, gab es

noch kleinere definitive Arbeiten die noch zu erledigen waren. Diese Arbeiten beziehen sich

hauptsahchlich auf das Umbauen des Racks, um einerseits die fehlenden Trahger herzustellen und zu

montieren und andrerseits um einen minimal notwendigen Teil der Verkablung neu zu erstellen und

zu verlegen.

 3.5.3 PHASE: Evaluierung des Grundaufbaus (gestützt auf Vorstudie)

Die hier vorgenommen Unberlegungen beziehen sich stark auf den eigentlichen Grundaufbau der

Hardware oder der elementaren Infrastruktur. Hier ohne genau durchdachten Plan vorzugehen, kann

bei mohglichen nachtrahglichen Design – Annderungen eine fatale Down – Time des Systems zur Folge

haben. Aufgrund der relativ klaren Vorstellungen des Endergebnisses, aber auch der klaren Vorgaben

seitens der zur Verfuhgung stehenden Mittel, bedarf es nur der Evaluierung zweier ungewisser Punkte.

Diese beiden nachfolgend erklahrten Punkte werden entweder mit einer simplen Gegenuhberstellung

oder mittels einer Nutzwertanalyse auf je ein Ergebnis minimiert:

• pfSense oder opnSense: Als langjahhriger User von pfSense tendiert der Autor klar zu pfSense.

Somit kommt im Grunde keine Linux - basierte Firewall – Distribution in frage, da die

Performance eines FreeBSD Network Stack ohnehin nicht erreicht werden kann. Bei opnSense

sieht dieser aber anders aus, da es nicht nur eine FreeBSD Distribution ist, sonder auch ein

Fork von pfSense. Zwar ist opnSense noch nicht so ausgereift wie pfSesnse, jedoch sprechen

zwei Punkte klar fuhr heute bereits notwendige Unberlegungen:

◦ Erstens die in den letzten Versionen von pfSense immer hahufiger auftretenden und uhberaus

nervigen Versionsdiskrepanzen der Pakete.

◦ Und zweitens, die in kurzen Zeitintervallen immer grohsser werdende Community von

opnSense, was im open source Bereich als klarer Indikator fuhr eine stabile Zukunftslohsung

Diplomarbeit von Bogdanovic Theodor für die HFU 15

FullOpenSourceVirtualization

ist. Denn selbst der Entwickler der seit kurzem aufgegebenen m0n0wall Firewall raht klar

zu opnSense.

• RAID 5 oder 10: Die Mohglichkeit einer Ausfallsicherheit auf Host – Ebene mittels der GlusterFS

eigenen Replizierungs- Mohglichkeiten wahre wohl die beste Lohsungen, jedoch fehlen die

Rechner und natuhrlich die finanziellen Mittel schlichtweg dafuhr. So muss sich der Autor dieser

Arbeit mit einer Disk- basierten Ausfallsicherheit zufrieden geben. Die Frage ist jedoch,

welcher RAID – Level wahre der geeignetste hierfuhr. Soll auf absolute Sicherheit gesetzt werden

mit dem Nachteil eines relativ hohen Diskspace Verlustes oder soll das Ausfallrisiko zu Gunsten

eines hohheren Diskspaces auf eine Disk beschrahnkt werden.

Die Klahrung dieser beiden Fragen ist unter Punkt 6 „Vorabklahrungen und Analysen“ ersichtlich.

 3.5.4 PHASE: Evaluierung des Produktivsystems (gestützt auf Hauptstudie)

Auch in der Hauptstudie sollen elementare Fragen geklahrt werden, welche das fertige Produkt so

formen, dass es nach den Kriterien des Auftrages funktioniert. Anhnlich wie in der Vorstudie sollen auch

hier die Fragen geklahrt werden, die eine Konfiguration nur in eine Richtung ermohglichen und wo

nachtrahgliche Annderungen mit erheblichem Aufwand, gekoppelt mit langen Down – Timephasen

verbunden sind. Die unten aufgefuhhrten Fragen welche einer Evaluierung bedurften sind stark

Software- oder Konfigurationslastig. Bei einer so umfangreichen Lohsung wie oVirt gibt es eine Vielzahl

an mohglichen Konfigurationsuhberlegungen und Design – Entscheidungen die eine Nutzwertanalyse

erfordern wuhrden. Jedoch sind die meisten dieser Unberlegungen bzw. Mohglichkeiten dynamischer

Natur und kohnnen selbst im Betrieb ohne weiteres geahndert werden. Die unten Aufgefuhhrten beiden

Punkte bedurften aber einer Abklahrung noch vor Inbetriebnahme:

• oVirt Version 3.5 oder 3.6: Open source Produkte die durch eine Community geleitet werden

und lange Planungsphasen vertragen sich meist nicht gut. So geschah es auch bei diesem

Projekt, dass nach langer Vorbereitung eine neue Version von oVirt als Produktiv freigeschaltet

wurde. Da dies auch noch wahhrend der Planungsphase geschah, sah sich der Autor dieser

Arbeit mit der gossen Frage konfrontiert, welche Version er nun wahhlen sollte.

• Ein grosser oder doch separierte Cluster: oVirt zahhlt zu den Engines, welche nicht einen

virtuellen Pseudoprozessor zur Verfuhgung stellen, sondern den realen Prozessor mit Hilfe der

Ring -1 Erweiterung (Hardware basierte Virtualisierung) durchreichen. Da aber im Cluster drei

unterschiedliche Intel Xeon Prozessor – Familien vorhanden sind, muss einem Cluster klar

gesagt werden, welche Familie er den VM's durchreichen soll. Man kann dies umgehen indem

man einfach die kleinste gemeinsame Prozessor – Familie als Standard fuhr alle Maschinen

definiert. Dies bedeutet aber den zur Verfuhgung stehenden Prozessor – Befehlssatz unnohtig fuhr

leistungsstahrkere Prozessoren zu verringern. Das Resultat wahre ein hoher Overhead seitens

des Prozessors.

Die Klahrung dieser beiden Fragen ist unter Punkt 7 „Vorabklahrungen und Analysen“ ersichtlich.

Bis hier hin wird es sicherlich einige Meilensteine geben, jedoch soll dieser Punkt besonderes

hervorgehoben werden. Denn ab hier sind sahmtliche Fragen geklahrt und es kann mit der Realisierung

begonnen werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 16

FullOpenSourceVirtualization

 3.5.5 PHASE: Mögliche Umsetzung der Realisierung

Nachfolgend sind in einer stark verkuhrzten Version die wichtigsten Schritte der Realisierung unter

eigenstahndigen Nummerierungen aufgefuhhrt.

 3.5.5.1 Installation und Konfiguration von pfSense

Ein Teil dieser Arbeit wurde noch vor dem offiziellen Auftrag erledigt, der zentrale Netzwerkknoten

des Clusters welcher zugleich der des privaten Segmentes des Autors ist. Diese Zeit wird auch direkt

im Projektplan als Effektivzeit erfasst.

Im ersten Schritt wurde der IBM Server entstaubt und mit vier Intel – Netzwerkkarten mit je vier Ports

(alles guhnstige Occasions Hardware) bestuhckt. Anschliessend wurde die aktuellste pfSense Version

installiert. Dann wurden die entsprechenden Interfaces in die jeweiligen Link Aggregation

zusammengefasst und eine Bridge uhber alles gebildet. Kurze undokumentierte Tests wurden an dieser

Stelle ebenfalls vollzogen. Feinkonfigurationen wie das definieren von Regeln werden im Verlauf der

Arbeit kontinuierlich ergahnzt.

 3.5.5.2 Komponenten platzieren und verkabeln

Der ungemanagte Switch wird positioniert und die meisten Netzwerkkabel werden verlegt und

entsprechend mit RJ45 – Steckern bestuhckt. Dies ist mohglich, da die Position der Server im Rack fix ist

und aufbauend auf der Vorplanung auch klar ist wie sie verkabelt werden muhssen.

 3.5.5.3 Einrichten des Storage (GlusterFS)

Die beiden HP Proliant Microserver werden mit den entsprechenden Festplatten bestuhckt und mit der

Installation der zu diesem Zeitpunkt aktuellsten Version von CentOS 7 wird begonnen. Installation und

Konfiguration der notwendigen Software wie Gluster oder VDSM. Erste kleine Funktionstest mit etwas

Dokumentations- unabhahngiger Spielerei.

 3.5.5.4 Installation der oVirt – Node – Images

Das fertige oVirt – Node – Image wird auf alle vier Virtualisierungsnodes installiert. Entsprechend wird

auch eine Engine- unabhahngige Minimalkonfiguration vorgenommen wie bspw. ein Netzwerk –

Interface konfiguriert. So kohnnen bequem uhber eine SSH Verbindung erste Eindruhcke gewonnen

werden.

 3.5.5.5 Installation der oVirt Management Engine

Auf einem bis dato ausser Betrieb stehenden kleinen Supermicro Barebone System wird eine CentOS 7

Minimalinstallation aufgespielt und die entsprechende Version 3.5 der oVirt Engine aufgesetzt. Dies

kann aufgrund oVirt- seitiger Ruhckportierungen einiger Funktionen von Version 3.6 zu 3.5 mit

erheblichen Schwierigkeiten verbunden sein.

 3.5.5.6 Vorsichtige Integration Teil 1

Wenn alle Komponenten in Einzelarbeit konfiguriert sind, kommt die Zeit der Zusammenfuhhrung. In

einem ersten Schritt soll der Storage in die oVirt – Engine Integriert werden. Zu diesem Zeitpunkt noch

mit Single – Interface Konfiguration. Dieser Punkt der Vereinigung zweier fuhr den Autor noch

unbekannter Komponenten ist absolutes Neuland, es wird aber mit wenigen Problemen gerechnet.

Diplomarbeit von Bogdanovic Theodor für die HFU 17

FullOpenSourceVirtualization

 3.5.5.7 Vorsichtige Integration Teil 2

An dieser Stelle ist es an der Zeit die restlichen Komponenten in die Engine zu integrieren. Die vier

Virtualisierungsnodes werden ebenfalls mit nur einem Management Interface eingebunden. Das

fertige oVirt – Node – Image sollte sich ohne weitere Schwierigkeiten einbinden lassen. Ein

Unterschied zwischen dem fertigen Image und den CentOS – Installationen ist technisch gesehen auf

den Unterbau bezogen nicht feststellbar, jedoch wird resultierend aus kleineren Vortests mit

minimalen Schwierigkeiten bezuhglich der Einbindung gerechnet, da hier Versionsdiskrepanzen

bezuhglich der VDSM – Abstraktionsschicht vorhanden sind.

 3.5.5.8 Konfiguration der oVirt spezifischen Infrastruktur

Wenn alles zusammengefuhhrt ist und einige kleinere Tests persohnlicher Natur stattgefunden haben,

kann die Infrastruktur konfiguriert werden. Dies umfasst folgende Punkte, welche aus den Vor- und

Hauptstudien hervorgingen:

• Konfiguration der Link Aggregation, Management -und Virtualisierungsseitig.

• Bilden des Datacenters

• Bilden der Cluster – Gruppen und definieren der zu nutzenden Prozessor – Familie

• Zuteilen der Speicher- und ISO – Domahnen

• Bilden und verteilen der Datacenter weiten Netzwerke (VMnet1)

Ab diesem Punkt wird ein zweiter erwahhnenswerter Meilenstein dieses Abschnittes erreicht, den ab

diesem Punkt kann virtualisiert werden. Diese hier stattfindenden Virtualisierungstest sind aber

persohnlicher Natur und werden nicht dokumentiert.

 3.5.5.9 Beginn Testreihe 1

Ab diesem Zeitpunkt ist die Konfiguration zwar noch nicht fertig, jedoch kohnnen erste Tests vollzogen

werden. Nachfolgend einige Punkte die Teil der Testreihe sein kohnnten:

• Ausfall von Netzwerk Interfaces

• Ausfall von Hosts aus der Virtualisierungsebene

• Ausfall der Management – Engine

• Verifizierung der Link Aggregation des Virtual Enviroments

• Verifizierung der Link Aggregation des Storage und Management Teils

Diese Tests sollten an dieser Stelle stattfinden, da sie zu mohglichen Schahden am bestehenden Aufbau

fuhhren kohnnen und eine Reimplementierung des Aufbaus zur Folge hahtten. Sollte dieser Fall eintreten,

so kann der Neuerstellungsaufwand auf ein technisches Minimum reduziert werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 18

FullOpenSourceVirtualization

 3.5.5.10 Beginn des Fine – Tuning des Clusters

Nach erfolgreichen Grobtests kann an dieser Stelle mit den Feinkonfigurationen begonnen werden.

Nachfolgend ein kleiner Auszug aus theoretisch notwendigen Konfigurationen:

• Einspielen von weiteren ISO – Images mit diversen Betriebssystemen.

• Erstellung der ersten Vorlagen aufbauend auf einer Debian 8.2 Rohinstallation mit grafischem

LXDE Desktop.

• Erstellung von QoS fuhr Speicher, Netztwerk und CPU Nutzung (Datacenter weit)

• Bildung von erster Affinitahtsgruppe

• Erweitern der vorhandenen Instanzentypen

 3.5.5.11 Beginn Testreihe 2

Hier kohnnen nun die oben genanten Konfigurationen des Fine – Tuning getestet werden. Da dies rein

softwareseitige Tests sind, muss mit keinen Schahden hinsichtlich der Infrastruktur des Clusters

gerechnet werden. Die unter Punkt 3.5.5.9 und 3.5.5.11 erwahhnten Tests sind unter Punkt 9 „Tests“

detailliert dokumentiert.

Dies war eine kurze Zusammenfassung des Vorgehens bei der Realisierung des Projektes von den

ersten Studien bis zu den Tests. Die hier nicht spezifisch erwahhnten Punkte wie bspw. kontinuierliche

Erstellung der Dokumentation etc. wurden der Kompaktheit halber dieses Abschnittes weggelassen.

Diplomarbeit von Bogdanovic Theodor für die HFU 19

FullOpenSourceVirtualization

 4 Projektplan
Auf den nachfolgenden Seiten ist der Projektplan mit direktem Vergleich zwischen der geschahtzten und

der effektiven Zeit aufgefuhhrt. Das Gantt – Diagramm welches fuhr die Darstellung verwendet wurde

zeigt jeweils die Tage in denen gearbeitet wurde an. Am Ende des Beschreibungstextes ist jeweils in

eckigen Klammern „[]“ der effektive Stundensatz an gearbeiteter Zeit erfasst. Leichte Abweichungen

innerhalb der gearbeiteten Tage sind mohglich, jedoch lahsst sich die Stundenzahl meist symmetrisch

durch die Anzahl eingetragener Tage teilen, um die effektiven Tagesstunden zu erhalten.

Der besseren Darstellung halber wurde der Projektplan in fuhnf Monate unterteilt, welche teilweise bei

einer grohsseren Menge an Eintrahgen in einzelne Teile gesplittet wurden. Die Verteilung sieht dabei wie

folgt aus:

• Oktober

• November

◦ Teil 1

◦ Teil 2

• Dezember

• Januar

◦ Teil 1

◦ Teil 2

• Februar

◦ Teil 1

◦ Teil 2

Hierbei wurde eine Effektivzeit von 251,5 Stunden benohtigt um das Projekt zu realisieren und zu

dokumentieren. Die geschahtzte Zeit betrug 278,5 Stunden, was auf die teilweise grosszuhgigen

Reserven zuruhckzufuhhren ist, welche Standardmahssig seitens des Autors bei Projekten ahhnlicher

Grohsse hinzugefuhgt werden. Diese Reserven beziehen sich auf Punkte, welche seitens des Autors neu

waren und wo eine saubere und schnelle Umsetzung nicht sicher war.

Diplomarbeit von Bogdanovic Theodor für die HFU 20

F
u

llO
p

en
S

ou
rce

V
irtu

alization

 4
.1

 P
ro

jek
tp

la
n

 d
es M

o
n

a
ts O

k
to

b
er

D
ip

lo
m

arb
eit v

o
n
 B

o
g
d
an

o
v
ic T

h
eo

d
o
r fü

r d
ie H

F
U

 2
1

F
u

llO
p

en
S

ou
rce

V
irtu

alization

 4
.2

 P
ro

jek
tp

la
n

 d
es M

o
n

a
ts N

o
vem

b
er T

eil 1

D
ip

lo
m

arb
eit v

o
n
 B

o
g
d
an

o
v
ic T

h
eo

d
o
r fü

r d
ie H

F
U

 2
2

F
u

llO
p

en
S

ou
rce

V
irtu

alization

 4
.3

 P
ro

jek
tp

la
n

 d
es M

o
n

a
ts N

o
vem

b
er T

eil 2

D
ip

lo
m

arb
eit v

o
n
 B

o
g
d
an

o
v
ic T

h
eo

d
o
r fü

r d
ie H

F
U

 2
3

F
u

llO
p

en
S

ou
rce

V
irtu

alization

 4
.4

 P
ro

jek
tp

la
n

 d
es M

o
n

a
ts D

ezem
b

er

D
ip

lo
m

arb
eit v

o
n
 B

o
g
d
an

o
v
ic T

h
eo

d
o
r fü

r d
ie H

F
U

 2
4

F
u

llO
p

en
S

ou
rce

V
irtu

alization

 4
.5

 P
ro

jek
tp

la
n

 d
es M

o
n

a
ts Ja

n
u

a
r T

eil 1

D
ip

lo
m

arb
eit v

o
n
 B

o
g
d
an

o
v
ic T

h
eo

d
o
r fü

r d
ie H

F
U

 2
5

F
u

llO
p

en
S

ou
rce

V
irtu

alization

 4
.6

 P
ro

jek
tp

la
n

 d
es M

o
n

a
ts Ja

n
u

a
r T

eil 2

D
ip

lo
m

arb
eit v

o
n
 B

o
g
d
an

o
v
ic T

h
eo

d
o
r fü

r d
ie H

F
U

 2
6

F
u

llO
p

en
S

ou
rce

V
irtu

alization

 4
.7

 P
ro

jek
tp

la
n

 d
es M

o
n

a
ts Feb

ru
ar T

eil 1

D
ip

lo
m

arb
eit v

o
n
 B

o
g
d
an

o
v
ic T

h
eo

d
o
r fü

r d
ie H

F
U

 2
7

F
u

llO
p

en
S

ou
rce

V
irtu

alization

 4
.8

 P
ro

jek
tp

la
n

 d
es M

o
n

a
ts Feb

ru
a

r T
eil 2

D
ip

lo
m

arb
eit v

o
n

 B
o

g
d
an

o
v
ic T

h
eo

d
o
r fü

r d
ie H

F
U

 2
8

FullOpenSourceVirtualization

 5 Pflichten

 5.1 Allgemeine Definition

Die allgemein zu erfuhllenden Spezifikationen dieser Arbeit sind unter Punkt 3.3 „Aufgabenstellung“

definiert. Die dort grob umschriebenen Funktionen werden nachfolgend genauer beschrieben.

 5.1.1 Sinn und Zweck

Der primahre Zweck dieser Arbeit ist die Erstellung eines Virtualisierungsclusters nach dem Vorbild

eines Red Hat Virtualization Systems, unter Verwendung der hierfuhr zur Verfuhgung stehenden open

source Komponenten, welche Red Hat quelloffen zur Verfuhgung stellt. Es soll mit neueren Technologien

wie bspw. GlusterFS gezeigt werden, dass es mohglich ist mit guhnstiger leistungsschwacher Hardware

einen vollwertigen Virtualisierungscluster zu erstellen. Dieser soll neben den heute uhblichen Features

wie Live Migration, Ressourcenzuteilung oder das Erstellen von vorkonfigurierten Vorlagen, auch eine

funktional einfach zu bedienende und auch ansprechende Management – Oberflahche bereitstellen. Es

soll mohglichst einfache Standard – Hardware verwendet werden. Dies bedeutet den Verzicht auf

spezialisierte Hardware – Komponenten wie RAID Controller, gemanagte Switches oder teure Glasfaser

– Anbindungen. Wo dennoch spezielle Hardware notwendig werden sollte, wird auf Gebrauchtware

ausgewichen.

Diese Arbeit soll nicht nur den Aufbau eines leistungsstarken Virtualisierungsclusters mit Standard –

Hardware demonstrieren, sonder auch zugleich die neue Hosting Basis des Autors bereitstellen. Somit

ist dies kein rein theoretisches Projekt, sondern es soll ein vollwertiges Produktivsystem darstellen,

welches der Autor dieser Arbeit aktiv nutzen kann.

 5.1.2 Geltungsbereich

Die hier in dieser Arbeit erwahhnten und eingesetzten Komponenten unterstehen den jeweiligen

Lizenzen und Namensrechten des Herstellers / Anbieters. Innerhalb dieser Arbeit kohnnen Namen oder

Bezeichnungen vorkommen welche dem Urheberrecht des Herstellers / Anbieters unterstehen, aber

nicht mit den notwendigen Rechtsschutz – Zeichen markiert sind. Hier gilt das Urheberrecht/

Namensrecht des Herstellers / Anbieters auch ohne spezifische Zeichen.

Diese Arbeit untersteht bis auf die extern hinzugezogenen Grafiken der Urheberschaft des Verfassers

dieser Arbeit. Diese Urheberschaft mit dem dazugehohrigen Copyright endet mit der Bekanntgabe der

Bewertung dieser Arbeit, oder automatisch am Tagesende des 2. April 2016. Ab diesem Zeitpunkt kann

diese Arbeit lizenzlos als Anleitung / Leitfaden genutzt oder ggf. verahndert werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 29

FullOpenSourceVirtualization

 5.1.3 Referenzierte Dokumente und Anleitungen

Die in den meisten Fahllen zu Rate gezogene Hilfsquelle ist wie in der heutigen Zeit uhblich eine Google –

Suche. So soll an dieser Stelle die Definition getroffen werden, dass eine Referenzierung auf eine Online

Dokumentation stets mit „→ Google – Anfrage“ beschrieben wird. Dies ist eine globale Definition,

welche die hohe Anzahl an Online – Referenzierungen innerhalb dieser Arbeit vereinfachen soll.

Buhcher oder spezifische Anleitungen in schriftlicher Form werden in den Quellen erwahhnt.

 5.2 Zielsetzung

Das definierte Gesamtziel dieses Projektes ist die Erstellung eines Virtualisierungsclusters auf Basis

des open source Framworks oVirt, unter Verwendung von guhnstiger Standard – Hardware. Es soll

mittels der Distributed Filesystem – Lohsung GlusterFS, welche seitens Red Hat klar propagiert aber

nicht als Standard gilt, ein zentraler Storage erstellt werden. Dieser soll aus leistungsschwacher

Hardware das Maximum an Geschwindigkeit und Speichervolumen herausholen. Ebenfalls soll mittels

eins ahlteren IBM Systems gezeigt werden, dass Switch- ahhnliche Funktionen auf einer Firewall

Distribution nahezu gahnzlich abgedeckt werden kohnnen. Im Groben gesprochen soll mit wenig das

Maximum an Performance herausgeholt werden.

Die genauen Spezifikationen, welche zwingend zu erfuhllen sind, werden in der nachfolgenden Tabelle

genannt:

Funktion /
Bedingung

Beschreibung Art der
Anforderung

Netzwerksegment

Link Aggregation In den Bereichen VM – Network und internes Kommunikations-
Netzwerk (Management/ Storage) sollen Link Aggregationen so
konfiguriert werden, dass Lastteilung und Ausfallsicherheit so
gut wie mohglich gewahhrleistet sind.

Muss Ziel

Vereinigung in
Bridge

(Switch Nachbildung)

Der VM – Network Teil soll so konfiguriert werden, dass er wie ein
konventioneller Switch funktioniert. Dieser Punkt soll den
Nachweis erbringen, dass auch eine Firewall – Distribution als
vollwertiger Switch genutzt werden kann. Monitoring Funktionen
wie sie in einem Switch vorkommen können, sind nicht expliziter
Bestandteil dieser Arbeit, wo es aber Vergleichsmöglichkeiten gibt
wird versucht auf diesen einzugehen.

Muss Ziel

Firewall Regelsätze Die Firewall soll auch so konfiguriert werden, dass eine annähernd
100%-ige Isolation zwischen dem VM- und dem internen Teil
erreicht wird. Dieser Teil ist allgemein und bedarf Konfigurationen
an diversen Stellen.

Muss Ziel

Firewall Regelsätze
(Bridge spezifisch)

Dieser Teil ähnelt dem oben beschriebenen Punkt. Er wird speziell
hervorgehoben, da bei pfSense die Interface – Konfiguration
(Firewall) auch nach einem Zusammenschluss in eine Bridge
weiterhin möglich ist. So muss eine Einzelkonfiguration der
Schnittstellen durchgeführt werden um tatsächliche Isolation zu
gewährleisten.

Muss Ziel

Tabelle 1: Muss Ziele: Netzwerksegment

Diplomarbeit von Bogdanovic Theodor für die HFU 30

FullOpenSourceVirtualization

Funktion / Bedingung Beschreibung Art der
Anforderung

Virtualisierungssegment

High Availability
(Nachtrag nach

Korrektur)

Es soll so gut wie möglich eine hohe Verfügbarkeit der VM's
realisiert werden. Aufgrund technischer Abhängigkeiten ist
vollautomatisches HA nicht möglich, die genaue Beschreibung
des Problems erfolgt unter Punkt 8 „Realisierung“ sowie eine
Korrekturerklärung unter Punkt 5.4 „Abweichungen und
Korrekturen“. Eine Alternative, genannt Semi-Automatic-HA,
welche seitens des Autors definiert wurde, kommt hier als Ersatz
des vollautomatischen HA zum Einsatz.

Die Entscheidung hierzu wurde in der dritten Betreuer-
Sitzung besprochen und genehmigt. Das Formelle hierzu ist
auf dem beiliegenden Datentrahger zu finden.

Muss Ziel

Last – Verteilung
(Nachtrag nach

Korrektur)

Es soll mohglich sein die Last so effizient wie mohglich auf die
zur Verfuhgung stehenden Nodes zu verteilen. Hierzu wird mit
Affinitahts- Gruppen gearbeitet, da die vollautomatische
Lastverteilung, welche es der Engine ermohglichen wuhrde die
VM Verteilung der momentanen Systemlast der Nodes
vollautomatisch vorzunehmen, ebenfalls den unter Punkt
„High Availability“ beschriebenen technischen Problemen
unterliegt.

Muss Ziel

Affinitäts- Gruppen Teilweise aufbauend auf den oberen Punkt, soll es möglich sein
Affinitäts- Gruppen zu bilden. So kann mit Positiv- oder
Negativwerten deklariert werden ob VM's welche in einer
gemeinsamen Gruppe sind zwingend auf einem Host
zusammenbleiben müssen, oder in der Negativansicht zwingend
voneinander getrennt werden müssen.

Muss Ziel

Live Migration Es soll möglich sein eine virtuelle Maschine von einem Host zu
einem anderen zu migrieren. Dies unter der Bedingung, dass die
Maschine nicht heruntergefahren werden muss. Hierfür sollen die
Cluster so konfiguriert werden, dass sich die Prozessor – Familien
überschneiden und kein Pseudo- Prozessor (qemu-kvm) zum
Einsatz kommt.

Muss Ziel

Ressourcenbegrenzung
(oVirt - QoS)

Für das Datacenter (Cluster) soll ein schmaler Satz (höchstens 3)
an Regeln zur Ressourcenbegrenzung erzeugt werden. Eine stark
begrenzende Regel (MIN) für „unwichtige“ Maschinen, eine
Standard Regel (STD) für den Normalbetrieb und eine hoch
priorisierte Regel (HIGH) welche „unbegrenzt“ als Standardwert
definiert hat. Diese drei Kürzel werden jeweils im VM – Namen
vorkommen, um den QoS – Zustand der VM's direkt herauslesen
zu können.

Muss Ziel

Tabelle 2: Muss Ziele: Virtualisierungssegment

Diplomarbeit von Bogdanovic Theodor für die HFU 31

FullOpenSourceVirtualization

Funktion / Bedingung Beschreibung Art der
Anforderung

Storagesegment

Zentralisierung Es soll aus zwei Komponenten ein einziger Storage gebildet
werden, welcher auch nur uhber einen Einbindepunkt
erreichbar ist. Hierfuhr wird GlusterFS genutzt um ein
Distributed Filesystem zu erzeugen.

Muss Ziel

Lastverteilung Eine Lastverteilung der Lese- und Schreibzugriffe seitens der
Virtualisierungsnodes soll möglich sein. Hierfür wird das
Standard – Distributed – Verfahren von GlusterFS verwendet.
Eine effizientere Lösung mittels Stripping kann momentan nicht
realisiert werden, da dies aus technischen Gründen (Locking
Files) nicht möglich ist.

Muss Ziel

Leistungsoptimierung
(Festplatten und

Filesystem)

Es wird versucht mittels einer optimalen Blocksize – Grösse die
optimale Performance aus dem RAID Verbund herauszuholen.
Dies resultiert aus der Tatsache, dass eine nicht optimale
Festplattenanzahl für einen RAID 5 – Verbund gewählt wurde.

Muss Ziel

Ausfallsicherheit Die Ausfallsicherheit seitens ganzer Storage – Nodes ist aufgrund
der Anzahl der verfügbaren Maschinen nicht möglich. Hier
beschränkt sich die Ausfallsicherheit auf die Festplatten, welche
mittels eines RAID Levels gesichert sind.

Muss Ziel

Tabelle 3: Muss Ziele: Storagesegment

Diplomarbeit von Bogdanovic Theodor für die HFU 32

FullOpenSourceVirtualization

 5.3 Wunschziele

Nachfolgend eine Liste mit den Wunschzielen, welche technisch gesehen zu Performance –

Steigerungen oder allgemein zu einer Verbesserung des Endergebnisses fuhhren. Diese sind aber klar

abgegrenzt zum eigentlichen Auftrag und werden nur bei Bedarf oder Zeit implementiert.

Funktion /
Bedingung

Beschreibung Art der
Anforderung

DNS System Es kann ein primahrer DNS Server innerhalb der Virtualisierung
aufgebaut werden, welcher einen sekundahren DNS mit den eigenen
Werten (dynamische IP; Privatanschluss) versorgt. Ein Script
innerhalb des privaten Netzwerks wuhrde die dynamisch
wechselnde IP erfassen und diese uhber einen Cronjob unter den
CNAME's updaten. So wuhrde eine statische IP bei einem Hoster
(externe VM) existieren und die eigentlichen Domain – Eintrahge
kohnnten lokal erledigt werden. Momentan lahsst sich aber kein dem
Budget entsprechender Hoster finden.

Wunschziel

Reverse Proxy Über eine Reverse Proxy Implementierung könnten die innerhalb der
Virtualisierung laufenden Webservices über eine IP und zwei Ports
angesprochen werden, da ja die URL's aus dem HTTP – Header
herauslesbar wären. Dieser Punkt steht aber in Abhängigkeit mit dem
oberen und kann daher erst realisiert werden wenn eine Lösung für das
„DNS – System“ gefunden wurde.

 Wunschziel

Zabbix
Überwachung

Ein Monitoring der VM's ist ohnehin allgemein notwendig. Der Autor
war sich aber beim Schreiben dieser Zeilen nicht im Klaren, welche
Lösung eingesetzt werden soll. Dies bedarf einer genaueren Abklärung,
da diese Lösung ein Langzeitsystem darstellt und sich nur unter
grossem Aufwand ändern lässt.

Wunschziel

Tabelle 4: Wunschziele: Allgemeine Ziele

Diplomarbeit von Bogdanovic Theodor für die HFU 33

FullOpenSourceVirtualization

 5.4 Abweichungen und Korrekturen

Da wahhrend dem Aufbau des Clusters immer wieder mit Schwierigkeiten zu kahmpfen war, resultierten

folglich auch einige minimale Annderungen daraus. Diese Annderungen haben aber am Hauptdesign des

Auftrages nie etwas geahndert. Eine grosse Schwierigkeit erforderte aber eine Betreuersitzung, in

welcher ein Korrekturbeschluss protokolliert werden musste. Dies betrifft wie im Protokoll des

Betreuungsgesprahches Nummer 3 herauszulesen ist die Hochverfuhgbarkeit. An dieser Stelle muss

zugegeben werden, dass die Vortests vor einreichen des Antrages zu wenig genau durchgefuhhrt

wurden. Die Annahme, dass sich das Ermitteln des Ausfalles eines Virtualisierungsnodes nur durch die

Management – Engine ermitteln lahsst war nicht korrekt. Fuhr eine saubere Erkennung eines toten Hosts

ist auf jeder Maschine das Vorhandensein eines LOM – Interfaces notwendig. Dieses Interface wird

nicht direkt von der Engine kontaktiert, sondern die Engine fordert die restlichen noch lauffahhigen

Hosts auf, jeweils nacheinander dem toten Host eine Steuernachricht zu schicken. Da aber einer der

Hosts aus dem High – Level Cluster kein Server Mainboard, sondern ein Workstation Board enthahlt, ist

somit auch kein LOM – Interface vorhanden. Somit ist eine der elementarsten Komponenten im Cluster

nicht fahhig HA durchzufuhhren. Zugleich behindert das Fehlen dieses High – Level Nodes auch die

Stuktur des geforderten High Availability – Auftrages (inkl. Automatischer Lastverteilung der VM's).

Als Korrektur dieser Fehleinschahtzung wurde eine Alternativlohsung namens Semi-Automatic-HA

beschlossen und entsprechend im Protokoll festgehalten. Diese Lohsung sieht die Installation eines

Monitoring – Systems wie Zabbix oder einer Nagios – Variante vor, welche uhber die Unberwachung der

einzelnen VM's den Ausfall eines Virtualisierungsnodes erkennen soll. Anhand dieser externen

Monitoring – Warnung kann nachfolgend das manuell Fencing eingeleitet werden, welches die Engine

gewissermassen „gewaltsam“ anweist den Host als tot anzuerkennen und mit dem Neustarten der

VM's auf einem anderen System zu beginnen. Diese Lohsung wird aber aus Zeitgruhnden nicht spezifisch

umgesetzt, sondern lediglich in der Theorie im betreffenden Abschnitt unter Punkt 8 „Realisierung“ in

einer mohgliche Umsetzungsvariante erlahutert.

Diplomarbeit von Bogdanovic Theodor für die HFU 34

FullOpenSourceVirtualization

 6 Vorabklärungen und Analysen

 6.1 Zweck und Umfang der Vorstudie / Analysen

Diese Vorstudie soll sich mit den Bereichen Netzwersegment und Storagesegment befassen. Genauer

mit den beiden nachfolgenden Fragen:

• Welches System soll fuhr den Netzwerkknoten verwendet werden. Hier muss geklahrt werden ob

das klassische und bewahhrte pfSense oder das neuere, unerprobtere aber dennoch

innovativere opnSense zum Einsatz kommt.

• Ebenso soll die elementare Frage bezuhglich des Storage geklahrt werden. Soll auf volles Risiko

gesetzt werden und eine Lohsungen mit mohglichst hoher Speicherplatz – Ausbeute gewahhlt

werden, oder soll eine Lohsung mit absoluter Verfuhgbarkeit prahferiert werden. Die

Entscheidungsfindung dreht sich hierbei um die Frage RAID 5 oder RAID 10.

Diese beiden Fragen muhssen mittels einer genauen Analyse im Vorfeld geklahrt werden, da

nachtrahgliche Annderungen im Bereich dieser beiden Kernkomponenten im Nachhinein nicht ohne

grossen Aufwand mohglich sind.

Die meisten Design – Entscheidungen sind durch den Auftrag sowie durch die physischen

Gegebenheiten klar definiert. Diese Vorstudie, welche sich mit den beiden oben genannten Fragen

beschahftigt, soll sich hauptsahchlich mit dem hardwareseitigen Kernaufbau beschahftigen.

 6.2 Zielsetzung

Das klar definierte Ziel dieser Vorstudie ist die Abklahrung der beiden elementaren Fragen bezuhglich

pfSense / opnSense sowie der Wahl des zu verwendenden RAID – Levels. Hierzu sollen allgemein

gesprochen folgende Parameter mittels diverser Analyseverfahren geklahrt werden:

• In Bezug auf das Netzwerksegment:

◦ Die Lohsung soll stabil lauffahhig sein.

◦ Sie soll auf jeden Fall eine leichte Bedienung ermohglichen.

◦ Das Produkt muss stahndig auf einem hohen Release – Stand sein (Sicherheitsluhcken/-

Updates)

◦ Nicht zwingend notwendig aber von Vorteil wahre eine modulare Erweiterbarkeit der

softwareseitigen Komponenten. Alternativ kann auch eine Lohsung gewahhlt werden welche

nicht erweiterbar ist, aber eine Fuhlle an Funktionen von Haus aus mitbringt.

◦ Die im Pflichtenheft (Netzwerksegment) geforderten Anforderungen sollten enthalten sein.

• Storagesegment:

◦ Performante Anbindung an das Virtualisierungssegment. Dieser Punkt ist von hohchster
Prioritaht, da ansonsten die Ausfuhhrungsgeschwindigkeit der VM's massiv darunter leiden
kohnnte. Das RAID soll in diesem Fall die notwendige Performance liefern kohnnen.

◦ Die Ausfallsicherheit sollte bis zu einem gewissen Masse gewahhrleistet sein.

Diplomarbeit von Bogdanovic Theodor für die HFU 35

FullOpenSourceVirtualization

◦ Das Auswechseln von Festplatten sollte noch mohglich sein, bzw. das Wiederherstellen des
gewahhlten RAID – Level sollte noch leicht mohglich sein.

Die Klahrung dieser Fragen sollte zu einem Netzwerksegement und einem Storagesegment fuhhren,

welches die nach Pflichtenheft zu erfuhllenden Anforderungen vollumfahnglich unterstuhtzt, aber so viele

Extras wie mohglich bietet.

 6.3 Zusätzliches

An dieser Stelle sei noch ein kleiner Testversuch bezuhglich Storagesegment erwahhnt. Eine erste

Unberlegung, welche nach Pflichtenheft nicht genau spezifiziert wurde, aber zu beginn als beste Lohsung

klassifiziert wurde, war die Verwendung des „stripe“ - Verfahrens bei GlusterFS. Hierbei wahre eine

RAID – Level 0 Nachbildung, verteilt uhber zwei GlusterFS Nodes mohglich gewesen. Diese hahtte zwar die

Wiederherstellungsfahhigkeiten massiv verschlechtert, aber die Lese- und Schreibgeschwindigkeiten

bis zur Hardwaregrenze maximiert. Dieses Verfahren ist in simplen Storage – Verfahren wie NAS –

Systemen voll funktionsfahhig. Die Verwendung in oVirt ist aber heute aus technischen Gruhnden nicht

realisierbar, da das Locking – File welches von den Virtualisierungnodes direkt in die Partition der

Storage – Nodes geschrieben werden muss, nicht mit der versplitteten Arbeitsweise von GlusterFS

Distributed Striping zurecht kommt.

 6.4 Klärung der Netzwerksegment – Frage

In den nachfolgend Unterkapiteln soll versucht werden die Frage nach der zu verwendenden „xxSense“

Distribution zu klahren.

 6.4.1 Einleitung

Die Verwendung eines FreeBSD basierten Derivats ist beim erzielen einer hohen Netzwerk –

Performance unverzichtbar. Daher war fuhr den Autor dieser Arbeit von Anfang an klar, dass ein

FreeBSD System zum Einsatz kommen muss. Ein leicht bedienbares GUI fuhr schnelle Eingriffe ist beim

Management eines so komplexen Systems schon beinahe Pflicht. Daher war die Wahl von pfSense

schon vorprogrammiert. Jedoch zeigte das pfSense Projekt in den letzten Versionen eine etwas

unschohne Problematik mit der Kompatibilitaht diverser modularer Erweiterungen untereinander. Das

opnSense Projekt versucht dies mittels eines Gesamtkonzeptes zu beheben, indem man nicht zulahsst

dass modulare Erweiterungen von Wildfremden ins Projekt fliessen, sondern alle Funktionen fixer

Bestandteil von opnSense sind. So kann das gesamte Projekt, welches wie aus einem Guss wirkt

kontinuierlich weiterentwickelt werden. Jedoch muss klar gesagt werden, dass das opnSense Projekt

noch in einer spahten Anfangsphase steckt und nicht alle Funktionalitahten aus pfSense repliziert

worden sind.

 6.4.2 Allgemeine Vorabklärungen

Vorabklahrungen im grossen Still sind nicht notwendig, da der Autor dieser Arbeit pfSense seit Jahren

im privaten Umfeld sowie in diversen fremden Umgebungen nutzt. Das Aufkommen von opnSense ging

auch nicht unbemerkt am Autor vorbei. Seit dem ersten Fork wurden vergleiche zwischen den

xxSenses gezogen und mohgliche Migrationsszenarien geplant. Daher wird an dieser Stelle auf Online –

Recherchen verzichtet und aus dem eigenen Wissensstand heraus analysiert.

Diplomarbeit von Bogdanovic Theodor für die HFU 36

FullOpenSourceVirtualization

 6.4.3 Benötigte Funktionalitäten

Zur Realisierung und somit als klar definierter Anforderungskatalog sind nachfolgende

Funktionalitahten zwingend notwendig:

• Mohglichkeit Link Aggregationen zu bilden.

• Mohglichkeit Bridges zu bilden, um Switch – Funktionen nachzubilden.

• Umfangreiche Firewall – Funktionen welche das Sperren von ganzen Netzwerken bis hin zu
einzelnen IP – Adressen ermohglichen.

• Aufzeichnung von Traffic. Dies im Sinne von Logs zum Zwecke der Sicherheit und das
Aufzeichnen von Traffic zur Erstellung von internen Statistiken.

• Funktionsumfang / Erweiterbarkeit; Dies ist nicht zwingend notwendig fuhr die Erfuhllung
dieser Arbeit. Aufgrund der Nutzung der Firewall im privaten Umfeld, soll diese Option fuhr
spahtere Ausbaumohglichkeiten offen bleiben.

• Erfahrung / Stabilität; Dieser Punkt stuhtzt sich auf das Alter der Projekte und somit der
daraus resultierenden, unter Produktivsystemen erbrachten Erfahrung. Es wird aber versucht
die langjahhrige Erfahrung seitens pfSense in direktem Vergleich mit der Stabilitaht von beiden
Produkten zu setzen. So soll auch beruhcksichtigt werden, dass pfSense heute leichte
betriebstechnische Instabilitahten aufweist und das opnSense nach Angaben seiner Entwickler
in naher Zukunft einen hohheren Grad an Stabilitaht erreichen soll als pfSense.

• Zeitfaktor; Zwar wird versucht eine Lohsung mit bestmohglichen Zukunftsaussichten zu wahhlen,
jedoch muhssen gewisse Faktoren in kuhrzerer Zeit erfuhllbar sein. So kann bspw. die zukuhnftige
hohe Stabilitaht von opnSense klar als ein Pluspunkt gewertet werden. Dauert dies aber lahnger
als die produktive Inbetriebnahme des Clusters oder ist gar die Rede von Jahren, so kann dies
keine Option sein. Dieser Punkt kann diverse Faktoren wie Funktionen, Extrafunktionen,
besseres Aussehen etc. beinhalten.

• Die Bedienung; Da opnSense pfSense als Basis hat, ist die Bedienung theoretisch identisch.
Die GUI's sind aber in einigen Punkten vom Aufbau und Design her unterschiedlich. Dieser
Punkt stellt einen Vergleichswert dar mit dem Schwerpunkt, welches GUI ist das angenehmere
und natuhrlich auch das optisch ansehnlichere.

 6.4.4 Der direkte Vergleich

In nachfolgender Tabelle soll aufbauend auf den Punkten der unter Punkt 6.4.3 „Benohtigte

Funktionalitahten“ genannten Funktionalitahten / Kriterien, ein direkter Vergleich der beiden Lohsungen

vollzogen werden. Hierbei wird eine Bewertungsskala mit folgenden Wertigkeiten gewahhlt:

• 1 → Niedrig; Funktionalitaht / Kriterium ist sehr schlecht bis kaum vorhanden.
• 2 → Ausreichend; Funktionalitaht / Kriterium kohnnte genuhgen, aber es sind massive

Abstriche notwendige.
• 3 → Genügend; Funktionalitaht / Kriterium ist erfuhllt, jedoch gibt es eine bessere Alternative

und dem Autor dieser Arbeit gefahllt diese Option gefuhhlsmahssig nicht.
• 4 → Gut; Funktionalitaht / Kriterium ist absolut erfuhllt.
• 5 → Sehr Gut; Funktionalitaht / Kriterium ist erfuhllt. Die Lohsung bietet kleine Extras die nicht

zwingend notwendig sind, aber dem Autor besonders gefallen.

Diplomarbeit von Bogdanovic Theodor für die HFU 37

FullOpenSourceVirtualization

Funktionalität / Kriterium PfSense OpnSense Bemerkung/ Begründung

Link Aggregationen 5 5
Ist auf beiden GUI's vom Konfigurationsablauf her identisch. In
lokalen Tests (VMware Workstation) zeigten beide Lohsungen die
gleiche Performance und das gleiche Verhalten.

Bridges 5 5 Dito wie Punkt „Link Aggregation“

Umfangreiche Firewall –

Funktionen 5 4

Bezogen auf die reinen Firewall Funktionen wie Sperren, Erlauben,
Weiterleiten oder nach spezifischen Punkten Filtern sind beide
identisch. Jedoch hat opnSense zur besseren Unbersicht ihr GUI so
modifiziert, dass man die Hilfe – Texte und erweiterte Optionen per
Default ausgeblendet hat. Hier verstecken sich aber manchmal
wichtige Optionen wie etwa die manuell anzulegende NAT – Regel fuhr
Proxy – Funktionen. Solche Situationen kohnnen verwirrend sein
wenn man sich erst seit kurzem mit opnSense beschahftigt.

Aufzeichnung von Traffic 5 5
Diese Funktion ist praktisch 1:1 von pfSense uhbernommen (mit GUI
Design).

Funktionsumfang/

Erweiterbarkeit 5 3

PfSense ist per Packages erweiterbar, was viele Zusatzfunktionen
ermohglicht. OpnSense hingegen versucht alles in einen Default – Guss
zu verpacken. So sollen alle Funktionen die pfSense heute bietet in
einem einheitlichen GUI vereint werden. Es sind aber vom Stand
„heute“ gesehen, nicht alle Funktionen implementiert.

Erfahrung/ Stabilität 4 4

Das pfSense Projekt hat sicherlich mehr Erfahrung in dieser Branche
und bietet auch mehr Erweiterungsmohglichkeiten. Doch genau diese
Mohglichkeiten fuhhren heute zu massiven Package – Diskrepanzen
untereinander. OpnSense bietet heute nicht alle Erweiterungen an,
jedoch ist das was vorhanden ist ziemlich gut. Beiden Produkten wird
ein gefuhhlter Wert „GUT“ gegeben.

Zeitfaktor 5 3

Die Zukunftsaussichten von opnSense sehen sehr gut aus. Doch einige
Funktionen wie Antiviren – Scanner muhssen aus Sicht des Autors
bereits heute vorhanden sein. Die Implementierung scheint aber
noch in weiter Ferne zu liegen.

Die Bedienung 4 4

Schaut man sich jedes GUI einzeln an, so wuhrde man beiden eine „5“
geben. Weiss man aber durch direkte Vergleichstests was das eine
Produkt hat, was dem anderen vielleicht auch gut stehen wuhrde, so
sinkt die subjektive Wahrnehmung und es reicht gerade mal fuhr ein
„GUT“.

Total des Vergleiches 38 33 Sieger nach direktem Vergleich pfSense.

Tabelle 5: Direkter Vergleich der beiden Lösungen pfSense und opnSense

 6.4.5 Auswertung des Resultates

Wie in Tabelle 5 zu erkennen ist, kann pfSense nach Punkten klar gewinnen. Wuhrde man die

notwendigen Funktionen auf das absolute Minimum reduzieren, kohnnte auch opnSense als

gleichwertiger Ersatz dienen. Hier war aber der Einfluss seitens der Projekt unabhahngigen Funktionen

wie bspw. Antivirus – Filter oder das weit bessere SquidGurad (Content Filtering) ausschlaggebend.

Diese Funktionen sind seitens der privaten Nutzung der Firewall zwingend notwendig.

 6.4.6 Reelle Umsetzung

Somit wird pfSense auf dem IBM Serversystem installiert und die Netzwerksegmentkonfiguration,

welche nach Auftrag und Pflichtenheft erforderlich ist, wird auf einem roten pfSense WebGUI anstelle

eines gelben opnSense aufgebaut.

Diplomarbeit von Bogdanovic Theodor für die HFU 38

FullOpenSourceVirtualization

 6.4.7 Anmerkung zur Analyse

Diese Analyse wurde nach einem vorgahngig bereits vorinstallierten pfSense durchgefuhhrt. Dies aus

dem Grund, da eine interne Umstrukturierung der eigenen Infrastruktur vor Beginn der Diplomarbeit

notwendig wurde. An dieser Stelle wahre eine eigenstahndige Analyse mohglich gewesen. Diese wurde

aber aufgeschoben, da sie ohnehin hahtte vollzogen werden muhssen. So wurde bei der Vorinstallation

nur eine Minimalkonfiguration angewendet, um im Falle eines anderen Ergebnisses dieser Analyse

eine einfachere Migration vornehmen zu kohnnen.

 6.5 Klärung der Storagesegment – Frage

In den nachfolgenden Unterkapiteln soll versucht werden die Frage nach dem zu verwendenden RAID

– Level, RAID 5 vs. RAID 10, zu klahren. Aufgrund der schwerwiegenden Fragestellung, mehr Diskspace

oder mehr Sicherheit, ist die Klahrung ahusserst komplex. Aus diesem Grund soll eine Nutzwertanalyse

angewendet werden, welche alle Fakten nuhchtern vergleicht und rein mathematisch zu einem Ergebnis

fuhhrt.

 6.5.1 Einleitung

Die Absicherung vor Unterbruhchen und Datenverlusten muss lokal auf den beiden Storage – Nodes (HP

Microserver) realisiert werden. Zwar stellen beide Nodes zusammen einen einzigen Share –

Mountpoint dar, jedoch hat GlusterFS hier kein Verstahndnis fuhr die darunterliegende Hardware oder

die Partitionen des Backends. Die Sicherung der Daten muss also uhber einen RAID – Level Verbund

realisiert werden. Hier stellt sich nun die Frage, soll die Sicherheit an erster Stelle stehen und somit ein

RAID 10 – Verbund kreiert werden, oder soll so viel Diskspace pro Node wie mohglich mittels RAID 5

herausgeholt werden.

 6.5.1.1 Wie könnte ein RAID 10 aussehen

Nachfolgende Definitionen orientieren sich an einem Node (standalone):

Ein RAID 10 Verbund wuhrde je zwei Disks in ein RAID 1 Subarray binden, uhber welches ein primahrer

RAID 0 gebildet wird, welcher die Schreib- und Lesegeschwindigkeit erhohhen wuhrde. Siehe

nachfolgendes Schema:

Diplomarbeit von Bogdanovic Theodor für die HFU 39

FullOpenSourceVirtualization

Dieses Gebilde wuhrde Sicherheit dahingehend liefern, dass „theoretisch“ zwei Festplatten ausfallen

kohnnten. Die Genaue Spezifikation wahre:

Subarray 1 (RAID1(Disk0, Disk1))

Subarray 2 (RAID1(Disk2, Disk3))

RAID10 = RAID0 (RAID_Subarray 1, RAID_Subarray 2)

Jedoch muss klar gesagt werden, dass der Ausfall sich auf zwei Festplatten aus zwei unterschiedlichen

Subarrays beziehen wuhrde. Sollten zwei Disks aus demselben Subarray ausfallen, so funktioniert das

RAID 0 Primary RAID nicht mehr. Die Wahrscheinlichkeit, dass Disks aus dem gleichen Subarray

ausfallen ist theoretisch so gering, dass das Risiko aus Sicht des Autors tragbar ist.

Die aus diesem Gebilde resultierenden Vorteile wären:

• Hohe Schreib- und Lesegeschwindigkeit uhber RAID 0

• Theoretisch eine hohe Ausfallsicherheit basierend auf der Tatsache, dass zwei Disks pro Node

ausfallen kohnnen.

• Disk Anzahl wahre in dieser Konstellation optimal.

Diplomarbeit von Bogdanovic Theodor für die HFU 40

Abbildung 5: Schema eines RAID 10 Verbundes auf einen Node bezogen

FullOpenSourceVirtualization

Die aus diesem Gebilde resultierenden Nachteile wären:

• Der grohsste Nachteil ist der relativ hohe Diskspace – Verlust. Rein mit Rohdaten gerechnet,

wuhrden pro Subarray 1,8 TB (gespiegelt) zur Verfuhgung stehen. Unber die RAID 0 Primary –

Verbindung wahren das 2x 1,8 TB = 3,6 TB an verfuhgbarem Diskspace je Node. Praktisch

gesprochen kann hier nur die Kapazitaht von zwei Festplatten genutzt werden.

• Das angesprochene Risiko, dass nie zwei Disks aus dem gleichen Subarray ausfallen duhrfen,

wird als ahusserst gering eingeschahtzt. Da aber die alten Disks aus dem Vorgahnger – Cluster zum

Zuge kommen, welche auch schon 3 – 4 Jahre alt sind, kann das Risiko nicht zu 100%

ausgeschlossen werden.

 6.5.1.2 Wie könnte ein RAID 5 aussehen

Nachfolgende Definitionen orientieren sich an einem Node (standalone):

Ein RAID 5 – Verbund wuhrde aus vier Disks bestehen, wobei keine separate Disk fuhr die Paritaht – Daten

verwendet wuhrde. Die Paritahtsinfomationen werden per Default auf alle vier Disks verteilt. Siehe

nachfolgendes Schema:

Dieses Gebilde wuhrde mit einer Ausfallmohglichkeit von nur einer Disk sicherlich das Betriebsrisiko

massiv erhohhen. Jedoch wahre der Diskspace – Gewinn bei dieser Konstellation der theoretisch grohsste

bei Beibehaltung von einer gewissen Ausfallsicherheit. Die Genaue Spezifikation wahre:

RAID5 = (Disk0, Disk1, Disk2, Disk3)

Diese Konstellation wuhrde bei momentaner Nichtbeachtung der Chunk – Size einen gewissen Verlust

des Diskspaces beim bilden des RAID 5 nach sich ziehen. Im Schnitt spricht man hier von der Grohsse

Diplomarbeit von Bogdanovic Theodor für die HFU 41

Abbildung 6: Schema eines RAID 5 Verbundes auf einen Node bezogen

FullOpenSourceVirtualization

einer ganzen Festplatte. Dies wuhrde bedeuten, dass bei 3x 1,8 TB (-1 fuhr RAID 5) eine Gesamtkapazitaht

von 5,4 TB zur Verfuhgung stehen wuhrde. Beim bilden eines GlusterFS Mountpoints wuhrde dies eine fuhr

den Virtualisierungscluster sichtbare Gesamtkapazitaht von ca. 10,8 TB bedeuten. Im Vergleich zum

RAID 10 wuhrde dies einen Gewinn von 3,6 TB bedeuten.

Die aus diesem Gebilde resultierenden Vorteile wären:

• Lesegeschwindigkeit ist technisch gesehen hohher, da von drei Platten gelesen werden kann.

• Bei den zur Verfuhgung stehenden Komponenten ist diese Konfiguration sicherlich die mit dem
grohssten Diskspace – Gewinn der uhberhaupt mohglich ist.

• Wiederherstellung der Daten beim Ausfall einer Platte geht einfacher, da sich das RAID selbst
um die Neuberechnung der Daten uhber die Patritahtsdaten kuhmmert.

Die aus diesem Gebilde resultierenden Nachteile wären:

• Die Schreibgeschwindigkeit ist bedeutend langsamer, da die Position der einzelnen Teil –
Datensahtze auf den Festplatten samt Paritahtsdaten erst vorberechnet werden muss.

• Die Wiederherstellung der Daten einer neuen Platte wird zwar teilweise automatisch
gemanagt, aber dies kann bei einer 1.8 TB Platte relativ lange dauern und frisst eine Menge an
Systemressourcen. Dies kann sich bei einer intensiven Nutzung des Storages seitens des
Virtualisierungscluster zu spuhrbaren Performanceeinbussen fuhhren.

• Die Anzahl Festplatten ist bei einem RAID 5 von entscheidender Bedeutung fuhr die maximale
Ausbeute an Kapazitahtsausnutzung. In der Regel verwendet man Platten in den Konstellationen
3, 6, und 9. Diese Zahlen garantieren eine optimale Verteilung der Paritahtsdaten anhand des
beim RAID 5 zum Einsatz kommenden Algorithmus. Dabei sinkt der Verlust, welcher durch das
Schreiben der Paritahtsdaten entsteht bei steigender Zahl der Festplatten, da sie bei einer
hohheren Anzahl effizienter verteilt werden kohnnen. Die Konstellation von vier Platten
innerhalb dieses Projektes gilt als ineffizient. Dem Verlust an Kapazitahtsausnutzung kann hier
nicht entgegengewirkt werden, jedoch ist es mohglich die hierbei entstehende Schreib- und
Lesegeschwindigkeit mittels einer optimalen Chunk – Size wieder in den Optimalwert von drei
Platten zu bringen.

 6.5.2 Welcher RAID – Level? (Nutzwertanalyse)

In der nachfolgenden Nutzwertanalyse sollen anhand von klar definierten Kriterien, die

entsprechenden Gewichtungsfaktoren und die dazugehohrigen Priorisierungen der Kriterien so gewahhlt

werden, dass ein performanter und Kapazitahtsreicher Storage Cluster entsteht, welcher den hohen

Anforderungen einer durch eine Vielzahl an VM's erzeugten Belastung stand hahlt.

 6.5.2.1 Die notwendigen Auswahlkriterien

Diplomarbeit von Bogdanovic Theodor für die HFU 42

FullOpenSourceVirtualization

Kriterien Deren Begründung bzw. Notwendigkeit

Mehrfach Ausfall

Aufgrund des Alters der sich im Moment in Betrieb befindlichen Disks, wahre es bis
zum nahchsten Hardware – Upgrade von Vorteil, wenn das Risiko des
Mehrfachausfalles von Disks besser geschuhtzt wahre.
Dieser Punkt orientiert sich stark an der RAID 10 Lösung.

Lesegeschwindigkeit

Die Lesegeschwindigkeit ist bei einem externen Storage von grohsster Wichtigkeit.
Besonders die Bootzeiten der VM's kohnnen bei zu langen Wartezeiten zu
Problemen fuhhren. Da der Grossteil der zukuhnftig in Betrieb stehenden Maschinen
Serversysteme sein werden (Webservices), ist schnelles Lesen vom Storage
zwingend notwendig.
Dieser Punkt orientiert sich stark an der RAID 5 Lösung.

Schreibgeschwindigkeit

Genau wie die Lesegeschwindigkeit, ist auch die Schreibgeschwindigkeit von
grohsster Bedeutung. Zu lange Wartezeiten beim Schreiben, kohnnen eine negative,
subjektive Wahrnehmung beim Desktop – User erzeugen. Desktop Systeme werden
aber selten zum Einsatz kommen. Was aber neben den stark lesenden Webservices
auch noch eine gewisse Bedeutung geniesst, sind Datenbanken als Backend –
Systeme. Hier wahre es von Vorteil wenn die Schreiboperationen schnell umgesetzt
werden kohnnen.
Dieser Punkt orientiert sich stark an der RAID 10 Lösung.

Diskspace

Bedenkt man die hohen Ressourcen welche von den beiden High – End –
Maschinen zur Verfuhgung gestellt werden, so ist eine hohe Anzahl an VM's mohglich.
Diese werden zwangslahufig auch einen hohen Anteil an Storage benohtigen. Es wahre
ratsam hier auf grohsstmohgliches Speicherplatz – Volumen zu setzen.
Dieser Punkt orientiert sich stark an der RAID 5 Lösung.

Wiederherstellung

(Einfachheit)

Im Falle eines Ausfalles gibt es bei Software – RAID 10 nur die Mohglichkeit die noch
lauffahhige Disk des Subarray (RAID 1) auf die neue zu Klonen. Dies ist meist mit
einer gewissen Down – Time verbunden. Bei RAID 5 muss ja ohnehin der Inhalt
der neuen Disk aus den Paritahtsdaten der noch lauffahhigen errechnet werden. So
kann dies im Laufenden Betrieb vollzogen werden.
Dieser Punkt orientiert sich stark an der RAID 5 Lösung.

Kostenfaktor (bezogen

auf Wiederherstellung)

Die Anschaffungskosten sind bei einer Disk ohnehin die selben. Jedoch ist es heute
uhblich auch die Nachbardisk eines RAID 1 – Verbundes anschliessend
auszuwechseln. Im Falle eines Disk – Neukaufes ist es auch wahrscheinlich, dass
Hardwarediskrepanzen bezuhglich Caches und aktiver Lese- /
Schreibgeschwindigkeit bestehen kohnnen. Um Performance – Einbussen beider
Disks zu vermeiden, bleibt das Auswechseln beider Disks unvermeidbar. Bei einem
RAID 5 besteht prinzipiell das gleiche Problem, jedoch wahre hier ein Auswechseln
aller Disks massiv teurer und wuhrde zu einer langen Downtime fuhhren. An dieser
Stelle muss die Problematik einfach akzeptiert werden.
Dieser Punkt orientiert sich stark an der RAID 5 Lösung.

Risiko Faktor

Dieser Faktor liegt rein im subjektiven Empfinden des Autors dieser Arbeit und
beschreibt primahr das Risiko, welches eingegangen werden muss im Falle einer
Wahl des RAID 5 Verbundes. Praktisch gesprochen ist dies ein reiner Zahlenfaktor,
welcher helfen soll innerhalb der Gewichtungsbestimmung der Kriterien in der
nachfolgenden Tabelle, einen gewissen subjektiven, „emotionalen“ Einfluss
nehmen zu kohnnen.
Dieser Punkt kann einen elementaren Einfluss auf beide Lösungen haben.

Tabelle 6: Kriterien für die Nutzwertanalyse zur Wahl eines geeigneten RAID - Level

Diplomarbeit von Bogdanovic Theodor für die HFU 43

FullOpenSourceVirtualization

 6.5.2.2 Ermittlung des Gewichtungsfaktors für die einzelnen Kriterien (GWF)

 Im Vergleich zu
M

e
h

rf
a

ch
 A

u
sf

a
ll

L
e

se
ge

sc
h

w
in

d
ig

k
e

it

Sc
h

re
ib

ge
sc

h
w

in
d

ig
k

e
it

D
is

k
sp

a
ce

W
ie

d
e

rh
e

rs
te

ll
u

n
g

K
o

st
e

n
fa

k
to

r

R
is

ik
o

 F
a

k
to

r

Summe
der

Bewertungs-
kriterien

Gewichtungs-
faktor

Mehrfach Ausfall 50% 50% 30% 20% 30% 60% 240% 11,32%

Lesegeschwindigkeit 50% 70% 50% 50% 60% 60% 360% 16,98%

Schreibgeschwindigkeit 50% 30% 50% 50% 60% 70% 310% 14,63%

Diskspace 70% 50% 50% 50% 50% 80% 350% 16,51%

Wiederherstellung 80% 50% 50% 50% 70% 50% 350% 16,51%

Kostenfaktor 70% 40% 40% 50% 30% 60% 290% 13,68%

Risiko Faktor 40% 40% 30% 20% 50% 40% 220% 10,38%

Der sich hieraus ergebende Umrechnungsfaktor → 2120 / 100 = 21,20 2120% 100.01%

Tabelle 7: Gewichtungsberechnung zur Wahl eines geeigneten RAID – Levels

In der Tabelle zur Gewichtungsberechnung der Kriterien wurden die Kriterien aus den senkrechten

Spalten mit denen in den waagerechten Zellen verglichen. Hierbei sind die hellgrau markierten Werte

die jeweiligen Restwerte zu den Rot markierten. Die Bewertung stellte immer die Frage, was ist

wichtiger aus der Perspektive vom waagerechten Kriterium zum senkrechten Kriterium. Je hohher der

Wert des waagerechten Kriteriums in der jeweiligen Zelle ist (% - Prozentual), desto wichtiger ist der

Punkt im direkten Vergleich.

Diplomarbeit von Bogdanovic Theodor für die HFU 44

FullOpenSourceVirtualization

 6.5.2.3 Bestimmung des Zielerreichungsfaktors (ZEF)

Zur Bestimmung des Zielerreichungsfaktors wird ein Bewertungs – Range von 1 – 5 angewendet:

• 1 → Das Kriterium lahsst sich durch den gewahhlten RAID – Level nicht erfuhllen.

• 2 → Das Kriterium lahsst sich durch den gewahhlten RAID – Level nur mit erheblichen
Schwierigkeiten erfuhllen.

• 3 → Das Kriterium lahsst sich durch den gewahhlten RAID – Level erfuhllen. Es ist aber nicht die
optimale Lohsung.

• 4 → Das Kriterium lahsst sich durch den gewahhlten RAID – Level erfuhllen.

• 5 → Das Kriterium lahsst sich durch den gewahhlten RAID – Level erfuhllt alles mit optimalen
Werten.

Bewertungskriterien RAID 5 RAID 10

Mehrfach Ausfall 1 5

Lesegeschwindigkeit 5 5

Schreibgeschwindigkeit 4 3

Diskspace 5 1

Wiederherstellung (Einfachheit) 4 2

Kostenfaktor (bezogen auf Wiederherstellung) 4 1

Risiko Faktor 4 5

Tabelle 8: Bestimmung des Zielerreichungsfaktors für die Nutzwertanalyse zur Wahl eines geeigneten RAID – Levels

Die Zielerreichungsfaktoren in der Tabelle 8 wurden nach dem Wissensstand und der Erfahrung des

Autors definiert. Hier flossen auch Annahmen bezuhglich der Erfahrung und der zur Verfuhgung

stehenden Hardware ein. Solche Annahmen sind bspw. die Schreibgeschwindigkeit vom RAID 10, der

sicherlich eine enorme Performance durch den RAID 0 besitzt. Jedoch kann diese Performance nur

durch entsprechend schnelle Hardware realisiert werden. Die beiden HP Microserver sind mit ihren

leistungsarmen Intel Celeron und den 2 GB RAM nach Annahme und Erfahrung nicht dazu geeigneten

einen Software RAID 1 und 0 praktisch zeitnahe so zu berechnen, dass sie nicht die Prozessoren an ihr

Limit treiben und somit die Gesamtperformance uhber lahngere Zeit darunter leidet.

Diplomarbeit von Bogdanovic Theodor für die HFU 45

FullOpenSourceVirtualization

 6.5.2.4 Ermittlung des Endergebnisses anhand der vorliegenden Fakten

RAID 5 RAID 10

Bewertungskriterien GWF ZEF Ermitt. Wert ZEF Ermitt. Wert

Mehrfach Ausfall 11,32% 1 11,32% 5 56,60%

Lesegeschwindigkeit 16,98% 5 84,90% 5 84,90%

Schreibgeschwindigkeit 14,63% 4 58,52% 3 43,89%

Diskspace 16,51% 5 82,55% 1 16,51%

Wiederherstellung

(Einfachheit) 16,51% 4 66,04% 2 33,02%

Kostenfaktor (bezogen auf

Wiederherstellung) 13,68% 4 54,72% 1 13,68%

Risiko Faktor 10,38% 4 41,52% 5 51,90%

Gesamtnutzwert 399,57% 300,50%

Tabelle 9: Ermittlung eines Siegers der Nutzwertanalyse zur Wahl eines geeigneten RAID – Levels

 6.5.3 Auswertung des Resultats

Wie aus Tabelle 9 ersichtlich ist, wird ein RAID – Level 5 fuhr die Storage – Systeme gewahhlt. Diese

Lohsung erfuhllt die geforderten Kriterien am besten und ist auch bei einer nuhchternen, etwas

entfernteren Betrachtung des Gesamtergebnisses im Verhahltnis zu den Kosten auch die beste Lohsung.

Zwar geht diese Lohsung in den heute uhblichen Trend auf volles Risiko zu setzen, jedoch wahre die

Ideallohsung mittels absoluter Sicherheit (RAID 10) mit Unmengen von Kosten verbunden gewesen.

 6.5.4 Reelle Umsetzung

Zur Umsetzung des Ergebnisses werden pro HP – Microserver alle vier HD – Slots mit den alten

Festplatten des alten Clusters bestuhckt. Anschliessend wird ein RAID 5 uhber alle vier Platten gebildet,

wobei die Paritahtsdaten verteilt auf allen Platten abgelegt werden. Hier eine separate Platte fuhr die

Paritahtsdaten zu nutzen wuhrde klar an Verschwendung grenzen und den Sinn dieser Nutzwertanalyse

aufs ahusserste in Frage stellen. Die genaue Umsetzung des RAID – Levels wird unter dem

entsprechenden Punkt 8 „Realisierung“ erklahrt.

Diplomarbeit von Bogdanovic Theodor für die HFU 46

FullOpenSourceVirtualization

 6.5.4.1 Kurzer Exkurs in Richtung Chunk Size

Aufgrund von Recherchen die bereits an dieser Stelle gemacht wurden, soll auch gleich die Erklahrung

der gewahhlten Chunk – Size erfolgen. Zwar geht es bei der Klahrung der Storge – Frage grohsstenteils um

Redundanz, jedoch soll an dieser Stelle auf analysebezoge Redundanz verzichtet werden. Eine →

Google – Anfrage fuhhrte zu nachfolgendem Weblink:

http://louwrentius.com/linux-raid-level-and-chunk-size-the-benchmarks.html

Hier sind, wie in nachfolgender Grafik zu erkennen ist, bereits diverse Benchmarks mit

unterschiedlichen Szenarien durchgefuhhrt worden. Darunter ist auch ein Benchmark, welcher die

ermittelte Lohsung und die damit verbundene 4 – Disk Problematik beschreibt. Die

Hardwarespezifikationen stimmen natuhrlich nicht uhberein, jedoch trifft das Grundprinzip vom Aufbau

her zu. Wie aus der Grafik zu entnehmen ist, lahsst sich die hohchste Performance mit einer Chunk – Size

von 32 Kilobyte erzielen. Somit ist eine 8x grohssere Blockgrohsse der Software – RAID – Tabelle

notwendig als es der Normalfall wahre, um die Performance zu optimieren. Diese Werte klingen logisch,

da bei einer grohsseren Blockgrohsse auch weniger Paritahtsdaten berechnet werden muhssen und somit

die Prozessorlast auch rapide sinkt. Dies hahlt mehr Ressourcen frei, welche dann dem Software – RAID

zur Verfuhgung gestellt werden.

Aufgrund der als seriohs wirkenden Tests auf besagter Seite, wurden die Werte als akzeptabel und

fremd getestet eingestuft und somit uhbernommen.

Achtung: Dieses Bild wurde zurechtgeschnitten um die wichtigsten Vergleiche zu zeigen. Das Original
ist auf der Website und dem beiliegenden Datentrahger zu Finden.

Diplomarbeit von Bogdanovic Theodor für die HFU 47

Abbildung 7: Vergleich von RAID 5 und 10 mi 4 Disks @Quelle: http://louwrentius.com/linux-raid-level-and-chunk-
size-the-benchmarks.html

FullOpenSourceVirtualization

 6.6 Recherche und Marktanalyse

Sucht man spezifisch nach Unternehmen die oVirt einsetzten, so kommt man direkt auf die oVirt Seite

namens „oVirt Case Studies“ auf welcher die grohssten Nutzer zu finden sind. Dies sind ein paar

Universitahten und einige grohssere Hoster (insgesamt 9). Nun kohnnte man ja das Produkt aufgrund der

geringen Nutzerzahl in Frage stellen. Doch darf man nicht vergessen, dass oVirt die

Entwicklerplattform von RedHat ist und somit der gesamte entwickelte Code von oVirt in seiner Stable

– Form zuruhck zum RedHat Virtualization Cluster fliesst.

Betrachtet man die doch etwas sicherere Konfiguration dieses Projektes und ist bereit an einigen

Stellen Abstriche zu machen, so kann seitens des Autors dieser Arbeit in Bezug auf die private Nutzung

von oVirt eine gute Marktlage vorhergesagt werden. Der Autor ist auch der Meinung, dass wenn man

mehr in das Marketing und die geschahftsbezogene Werbung investierten wuhrde, man auch kleinere

Unternehmen (hier speziell KMU's) dazu anreizen kohnnte selbst ihre Services zu betreiben, anstelle all

ihrer sensiblen Daten out zu sourcen. Wie gesagt, minimale Abstriche in Bezug auf ein solches

Referenzprojekt wie dieses und die Verwendung von bestehender Hardware in Kombination mit einem

kostenlosen Projekt wie oVirt, wuhrde nur noch Support- und Unterhaltskosten bedeuten.

Diplomarbeit von Bogdanovic Theodor für die HFU 48

FullOpenSourceVirtualization

 7 Hauptstudie mit Konzeptvarianten

 7.1 Zweck und Umfang dieser Hauptstudie

Wie die Vorstudie orientiert sich auch die Hauptstudie den Gegebenheiten des bestehenden

Environment und dem Auftrag. Hier sollen die softwareseitigen Faktoren geklahrt werden, welche vor

Beginn der Realisierung definiert werden muhssen. Auch hier gilt; Annderungen im nach hinein sind nur

schwer oder uhberhaupt nicht mehr mohglich. Innerhalb dieses Kapitels sollen zwei elementare Fragen

geklahrt werden, wobei jede Frage fuhr sich eine Umsetzungsvariante darstellt. Die zu klahrenden Fragen

betreffen hier das Herzstuhck des gesamten Clusters und zwar oVirt selbst.

Die beiden zu klahrenden Punkte, welche sich in jeweils zwei mohgliche Umsetzungsvarianten splitten

sind:

• Entscheidungsfindung 1: Welche Version von oVirt soll integriert werden?

◦ oVirt 3.5; alt aber erprobt

◦ oVirt 3.6; neu und umfangreicher

• Entscheidungsfindung 2: Separierung der Cluster oder doch einfach einen grossen?

◦ Sollen sich die Cluster den unterschiedlichen Prozessor – Familien anpassen

◦ … oder reicht ein grosser Cluster der die Familien vereint?

Zur Klahrung dieser beiden Fragen, welche dem Autor dieser Arbeit doch einiges an Kopfzerbrechen

bereitet haben, soll wieder auf das bewahhrte und nuhchterne Verfahren einer Nutzwertanalyse gesetzt

werden. Dies garantiert bei bedachter und zukunftsorientierter Wahl der Kriterien, eine auf

mathematische Entscheidungsfindung beschrahnkte und von Emotionen eher befreite Lohsung.

 7.2 Entscheidungsfindung 1

In den nachfolgenden Subpunkten soll die Frage geklahrt werden, welches Major – Release von oVirt

implementiert erden soll.

 7.2.1 Einleitung

Nun bedenkt man, dass die Vortests welche als Grundlage zum Einreichen des Auftrages mit Version

3.5 gedient haben, auch auf dieser Version stattgefunden haben, so kohnnte man den Sinn dieser

Fragestellung an dieser Stelle zunahchst auch in Frage stellen. Dies vor allem darum da die

Versionsspruhnge bei oVirt meistens mit starken Verahnderungen im GUI verbunden sind. Doch kann

hier eine Ausnahme gemacht werde, da die neuen Features von Version 3.6 und somit die Prozeduren

wie bspw. Installation (hier speziell HA – Installation), seitens oVirt als so innovativ angesehen

wurden, dass sie bei diesem speziellen Versionsverhahltnis wieder nach 3.5 zuruhckportiert wurden.

Somit sind die Grundlagen der Installation praktisch bei beiden Versionen identisch. Bezogen auf die

Grundfunktionen wie bspw. das User – Management oder die GlusterFS – Integration gab es in den

letzten Versionen einige relativ starke Verahnderungen, doch sind diese in den Versionen 3.5 – 6 im

Grundaufbau praktisch identisch. Somit spielt der Grundaufbau von oVirt (inkl. Installation) an dieser

Stelle keine grosse Rolle. Was aber ausschlaggebend ist und somit dringend einer genaueren

Diplomarbeit von Bogdanovic Theodor für die HFU 49

FullOpenSourceVirtualization

Untersuchung bedarf, sind die neuen Features die Version 3.6 mit sich bringt. Die neuen Features die

sich in Version 3.6 finden lassen sind teilweise noch nicht ganz ausgereift, weswegen darauf zu achten

ist, die Auswertung der neuen Features im direkten Vergleich mit der „alten“ Version in einem klaren

Verhahltnis zu Kriterien wie Stabilitaht, Produktivitaht und einer guten Dokumentation

gegenuhberzustellen.

Hieraus resultieren folgende beiden Varianten der Umsetzung:

• Variante mit Version 3.5 (nachfolgend nur noch mit Konzept 3.5 betitelt)

Konzept 3.5 gilt allgemein hin als erprobt und ist bei diversen Stellen auch bereits in Betrieb.

Die meisten Dokumentationen die sich durch eine → Google – Anfrage ermitteln lassen sind

zwar auch ahlterer Natur, sie wurden aber so uhberarbeitet, dass sie sicher auf Version 3.5

anwendbar sind. Dies gilt grohsstenteils auch fuhr die frei zugahnglichen RedHat – Dokumentation,

welche sich in gewissen Punkten noch auf die Version 3.4 beziehen, aber dennoch auf Version

3.5 anwendbar sind. Die Komponenten und die daraus resultierenden

Konfigurationseigenschaften richten sich stark nach den Mohglichkeiten des KVM

Environments, was auch den Wuhnschen des Autors entspricht.

• Variante mit Version 3.6 (nachfolgend nur noch mit Konzept 3.6 betitelt)

Konzept 3.6 kam als Finale – Release gerade noch so knapp vor einem mohglichen

Realisierungs- Beginn dieser Arbeit heraus. Es bringt einige kleinere Verbesserungen

gegenuhber 3.5 mit. Die beiden wichtigsten Features welche dem Autor gleich ins Auge

gestochen sind, waren die teilweise Verbesserung der VMware ESXi Konvertierungs-

Unterstuhtzung und das Hardware – Passthroughing. „Hardware“ - Passthrough deswegen, weil

mittlerweile PCI, SCSI und usb_devices bequem und nur uhber das GUI konfigurierbar sind. Die

ESXi – Konvertierung nutzt nun die Erweiterung v2v (VMware2oVirt) um uhber einen „External

Provider“ sich mit einem ESXi – Host zu verbinden und die Virtual – Disk in den oVirt Storage

zu holen. Dies ist zwar mit ein wenig Command – Line – Arbeit verbunden, aber es lahuft nicht

schlecht. Der grosse Vorteil hier wahre das zukuhnftig mohglicherweise auftretende Migrieren von

ESXi Disk – Images von dritten (Freunden) in den eigenen Cluster zwecks Unbernahme des

Hostings.

Diplomarbeit von Bogdanovic Theodor für die HFU 50

FullOpenSourceVirtualization

 7.2.1.1 Die notwendigen Auswahlkriterien

Kriterien Deren Begründung bzw. Notwendigkeit

Stabilität/Erfahrung

Dieses Kriterium stuhtzt sich auf die im Einsatz befindlichen Versionen und wie das
Feedback der Nutzer ist. Hierbei werden als Indikatoren die Kommentare der User in
den unterschiedlichen Foren betrachtet und in welche Richtung ihre Reaktionen in
welcher Anzahl zu welcher Version tendieren. Dieses Kriterium hat beide Lösungen
beeinflusst .

„LTS“

Es gibt einige zur Zeit im Einsatz befindliche Lohsungen. Die Modifikationen die aber in
den hier analysierten Versionen vorkommen, weichen stark von den ahlteren Versionen
ab. Es ist anzunehmen, dass das Design von 3.5 als Standard fuhr eine lange Zeit dienen
wird. Da es aber auch Modifikationen in 3.6 gab die in 3.5 nicht mehr vorkommen oder
anders umgesetzt sind (v2v und Passthroughing ausgeschlossen), soll mit reinem
Bauchgefuhhl versucht werden diese Unterschiede zu vergleichen. Daraus kann
abgeschahtzt werden, ob es notwendig wird zwingend den neuesten Versionen zu folgen
(gleich beginnend mit 3.6), oder sich zuruhckzulehnen und mit der Version 3.5 bis zum
Release – Ende (und daruhber hinaus) zu arbeiten.
 Dieses Kriterium kann beide Lösungen beeinflusst.

Dokumentation

Bei fuhr den Autor neuen Produkten ist eine saubere Dokumentation manchmal von
grohsster Wichtigkeit. Version 3.6 ist zwar erst seit kurzem verfuhgbar, sie ist aber als
„Produktiv“ gekennzeichnet. oVirt ist in solchen Situationen relativ schnell was das
Thema Doku anbelangt. Dennoch ist fuhr diese Arbeit entscheidend, dass einige Themen
jetzt schon erklahrbar sind und nicht erst in 2 – 3 Monaten nach der Abgabe dieser
Dokumentation. Hier soll eine ungefahhre Abschahtzung getroffen werden, wie die
Situation mit der 3.6 – Dokumentation im Moment und bei Abgabe dieser Arbeit sein
wird.
 Dieses Kriterium kann beide Lösungen beeinflusst.

Konvertierung (v2v)

Die Konvertierung von VMware Disks zu oVirt- kompatiblen ist sicherlich ein nuhtzliches
Feature. Hier stellt sich einfach die Frage ob man sich Verblenden lahsst aufgrund einer
neuen Technologie, wo einfach mal wieder die Augen grohsser sind als der reale Nutzen,
oder ob es in Zukunft absolut notwendig ist und auch massiv zum Einsatz kommen soll.
Dieser Punkt stellt eine ungefahhre Einschahtzung des Autors da, wie gross eine mohgliche
Anzahl an Kunden sein wird, wo der Einsatz v2v notwendig wird. Hier soll noch
erwahhnt werden, dass v2v nicht nur fuhr VMware, sondern auch fuhr reine XEN (nicht
Xenserver) Hypervisor einsetzbar ist.
 Dieses Kriterium beeinflusst stark das Konzept 3.6

Passthroughing

Im allgemeinen muss auch hier die Auge zu Nutzen – Rechnung genau betrachtet
werden. Zwar ist in der Server – Virtualisierung dies ein mehr als nutzloses Feature
wenn man bedenkt, dass niemand ausser dem Admin realen Zugang zum Cluster hat,
jedoch wuhrde es dem Autor mehr als nur gefallen, wenn er ganze Grafikkarten zum
Zwecke des Gamens einer Windows VM zuteilen kohnnte.
 Dieses Kriterium beeinflusst stark das Konzept 3.6

Risikofaktor

Dies ist ein rein emotionaler Faktor, den der Autor dieser Arbeit ins Spiel bringt um
eine Abschahtzung bezuhglich der Risiken folgender beider Punkte besser abwahgen zu
kohnnen:

• Besteht ein Risiko in den Versionen stecken zu bleiben bei der Verwendung
mit Version 3.5 (gilt immerhin als alt).

• Besteht ein Risiko mohglicherweise eine als produktiv eingestufte, aber in
Wirklichkeit noch nicht fertige Version 3.6 zu wahhlen. Denn zum Zeitpunkt
dieser Analyse war in diversen Foren bereits die Rede von Version 3.6.1, was
bei oVirt mehr als ungewohhnlich ist.

Dieses Kriterium kann beide Lösungen beeinflusst.

Tabelle 10: Kriterien für die Nutzwertanalyse Betreff Konzept 3.5 oder Konzept 3.6

Diplomarbeit von Bogdanovic Theodor für die HFU 51

FullOpenSourceVirtualization

 7.2.1.2 Ermittlung des Gewichtungsfaktors für die einzelnen Kriterien (GWF)

 Im Vergleich zu
St

a
b

il
it

ä
t/

E
rf

a
h

ru
n

g

„L
T

S“

D
o

k
u

m
e

n
ta

ti
o

n

K
o

n
ve

rt
ie

ru
n

g
 (

v
2

v
)

P
a

ss
th

ro
u

gh
in

g

R
is

ik
o

fa
k

to
r

Summe
der

Bewertungs-
kriterien

Gewichtungs-
faktor

Stabilität/Erfahrung 50% 50% 60% 60% 40% 260% 17,33%

„LTS“ 50% 50% 70% 70% 50% 290% 19,33%

Dokumentation 50% 50% 60% 60% 30% 250% 16,66%

Konvertierung (v2v) 40% 30% 40% 20% 50% 180% 12,00%

Passthroughing 40% 30% 40% 80% 40% 230% 15.33%

Risikofaktor 60% 50% 70% 50% 60% 290% 19,33%

Der sich hieraus ergebende Umrechnungsfaktor → 1500 /100 = 15 1500% 99.98%

Tabelle 11: Gewichtungsberechnung zur Wahl eines geeigneten Konzeptes (3.5 vs. 3.6)

In der Tabelle zur Gewichtungsberechnung der Kriterien wurden diese aus den senkrechten Spalten

mit denen in den waagerechten Zellen verglichen. Hierbei sind die hellgrau markierten Werte die

jeweiligen Restwerte zu den rot markierten. Die Bewertung stellte immer die Frage, was ist wichtiger

aus der Perspektive vom waagerechten Kriterium zum senkrechten Kriterium. Je hohher der Wert des

waagerechten Kriteriums in der jeweiligen Zelle ist (% - prozentual), desto wichtiger ist der Punkt im

direkten Vergleich.

Diplomarbeit von Bogdanovic Theodor für die HFU 52

FullOpenSourceVirtualization

 7.2.1.3 Bestimmung des Zielerreichungsfaktors (ZEF)

Zur Bestimmung des Zielerreichungsfaktors wird ein Bewertungs- Range von 1 – 5 angewendet:

• 1 → Das Kriterium lahsst sich mit dem Konzept nicht erfuhllen.

• 2 → Das Kriterium lahsst sich mit dem Konzept nur mit erheblichen Schwierigkeiten erfuhllen.

• 3 → Das Kriterium lahsst sich mit dem Konzept erfuhllen. Es ist aber nicht die optimale Lohsung.

• 4 → Das Kriterium lahsst sich mit dem Konzept erfuhllen.

• 5 → Das Kriterium lahsst sich mit dem Konzept erfuhllen, es ist auch die beste Wahl
uhberhaupt.

Bewertungskriterien Konzept 3.5 Konzept 3.6

Stabilität/Erfahrung 5 3

„LTS“ 5 4

Dokumentation 5 3

Konvertierung (v2v) 2 4

Passthroughing 2 5

Risikofaktor 4 2

Tabelle 12: Bestimmung des Zielerreichungsfaktors für die Nutzwertanalyse zur Wahl eines geeigneten Konzeptes (3.5
vs. 3.6)

Wie bereits in Tabelle 10 erwahhnt, sind hier einige Faktoren wie bspw. mohglicher Anzahl zu

migrierender VMware – Images oder der effektive Einsatz von Passthroughing als reine

Bauchgefuhhlsschahtzung seitens des Autors hineingeflossen. Genaue Zahlen sind an dieser Stelle nicht

oder noch nicht mohglich. Daher wird dieser Faktor hier nur erwahhnt, aber nicht genauer spezifiziert.

Diplomarbeit von Bogdanovic Theodor für die HFU 53

FullOpenSourceVirtualization

 7.2.1.4 Ermittlung des Endergebnisses anhand der vorliegenden Fakten

Konzept 3.5 Konzept 3.6

Bewertungskriterien GWF ZEF Ermitt. Wert ZEF Ermitt. Wert

Stabilität/Erfahrung 17,33% 5 86,65% 3 51,99%

„LTS“ 19,33% 5 96,65% 4 77,32%

Dokumentation 16,66% 5 83,30% 3 49,98%

Konvertierung (v2v) 12,00% 2 24,00% 4 48,00%

Passthroughing 15,33% 2 30,66% 5 76,65%

Risikofaktor 19,33% 4 77.32% 2 38,66%

Gesamtnutzwert 398,58% 342,60%

Tabelle 13: Ermittlung eines Siegers der Nutzwertanalyse zur Wahl eines Konzeptes (3.5 vs. 3.6)

 7.2.2 Auswertung des Resultats

Wie in Tabelle 13 zu sehen ist, hat das altbewahhrte Konzept knapp gesiegt. Die Kriterien und deren

Gewichtung waren zwar so ausgelegt, dass auch ein kleiner „touch“ an neueren Funktionen dabei war,

jedoch lag der Fokus klar auf langer Betriebszeit. Um ehrlich zu sein passt das Ergebnis dem Autor

dieser Arbeit auch gut, denn bei einer solch wichtigen Arbeit auf volles Risiko zu setzen und mit einer

relativ neuen Version zu arbeiten, wahre ohne Netz und doppelten Boden doch sehr riskant gewesen. In

so komplexen Cluster – Umgebungen sollte ohnehin mit stabilem Langzeitlohsungen gerechnet werden,

welche sich mindestens bei jemand anderem im Produktivbetrieb bewahhrt haben und dies ist bei 3.5

klar der Fall.

Diplomarbeit von Bogdanovic Theodor für die HFU 54

FullOpenSourceVirtualization

 7.3 Entscheidungsfindung 2

In den nachfolgenden Subpunkten soll die Frage bezuhglich der Cluster – Design Frage thematisiert

werden.

 7.3.1 Einleitung

Die Frage nach dem Cluster – Design Schema ist in grossen Hosting – Umgebungen sicherlich von

grohsster Bedeutung und bedarf der Zuwendung eines Network- oder Cluster – Engineers. Hier kohnnte

man sich die Frage stellen, warum bei vier Nodes den so ein Theater. Der Grund hierfuhr ist, dass oVirt,

gluhcklicherweise muss man auch sagen, nicht einfach einen Pseudoprozessor (qemu-kvm) generiert

wie es KVM von sich aus per Default machen wuhrde, sondern es wird versucht einen Prozessor aus

einer Liste mit vordefinierten Prozessoren direkt an die VM weiterzureichen. Hierbei wird der fuhr die

Virtualisierung maximale Prozessorbefehlssatz (Ring -1) des jeweiligen Prozessors uhber das WebGUI

der Engine definiert und weitergereicht. Kann die VM von sich aus einen hoch privilegierten Befehl an

den Prozessor senden, so muss der Hypervisor nicht ein Befehlsmapping vornehmen, um

stellvertretend im Namen der VM diese Aktion im Prozessor auszulohsen. Nun ist es so, dass unter den

vier Nodes zwei Prozessor – Familien existieren. Die beiden Fujitsu und der Subermicro nutzen

Prozessoren aus der Intel SandyBridge – Familie und der leistungsstahrkere Dell bewegt sich in der

Westmere Familie. Nun kohnnte man ja sagen, der kleinste gemeinsame Nenner ist die Westmere

Familie und entsprechend alle in diese packen. Dann muhssten aber alle moderneren SandyBridges die

Befehle, welche nicht im Befehlsumfang des Westmere wahren, muhhsam mappen. Dies bedeutet

Overhead in grossen mengen uhber drei Maschinen. Die Frage ist, soll dieser Overhead bei einem

Cluster dieser geringen Grohsse akzeptiert werden, oder lohnt sich eine Separierung welche auch die

Anzahl Maschinen pro Cluster reduzieren wuhrde.

Hieraus ergeben sich folgende beiden Varianten:

• Variante mit nur einem grossen Cluster (nachfolgend nur noch als Konzept OneFamily betitelt)

Hier wuhrden alle vier Nodes in die kleinste gemeinsame Familie Intel Westmere gepackt. Dies
wuhrde eine massiv vereinfachte Live – Migration bedeuten, da ja alle im gleichen Cluster wahren.
Zusahtzlich wuhrde es die Regelsahtze bezuhglich Affinitahtsgruppen und spahterer userbezogener
Verwaltungsrechte vereinfachen. Ein gewisser Overhead wird aber immer bleiben und
praktisch gesprochen; es wird Wahrme fuhr nichts erzeugt. Was bei der momentanen Lage der
Maschinen (bei mir irgendwo in einer Wohnungsecke) ohnehin etwas problematisch ist.

• Variante mit optimaler Verteilung der Nodes innerhalb des Clusters (nachfolgend nur noch als
Konzept ToBig betitelt)

Bei dieser Variante muhsste man die Nodes so verteilen, dass sich die Familien so gut wie
mohglich untereinander einschliessen. Hier muhssten aber auch die Leistungsdimensionen
beruhcksichtigt werden, was im Klartext bedeutet, die leistungsschwachen Fujitsus welche nicht
in nahchster Zeit einer Hardware – Aufstockung unterzogen werden, muhssten in einen eigenen
Cluster. So bleiben die beiden grossen Maschinen in einem eigenen Cluster. Dies bedeutet zwar
fuhr den Supermicro, dass er Overhead erzeugen muss, da sein Prozessor aus der SandyBridge –
Familie in die tiefere Westmere rutscht. Jedoch gibt es keine andere Alternative, um den
Overhead der bei einer solch asymmetrischen CPU – Durchmischung entsteht auf ein Minimum
zu reduzieren.

Diplomarbeit von Bogdanovic Theodor für die HFU 55

FullOpenSourceVirtualization

 7.3.1.1 Die notwendigen Auswahlkriterien

Kriterien Deren Begründung bzw. Notwendigkeit

Einfachheit
Die Lohsung soll zwar das Optimum herausholen, jedoch soll das Design nicht zu
komplex sein, da ja nur ein Admin (der Autor) das Management uhbernehmen wird.
Dieses Kriterium beeinflusst das Konzept OneFamily.

Optimale Performance

Overhead aufgrund von zu tiefer CPU – Klassifizierung kann sicherlich bis zu einem
gewissen Grad hingenommen werden. Im Idealfall sollte es in der heutigen Green – IT
Gesellschaft nicht vorkommen.
Dieses Kriterium kann theoretisch beide betreffen, je nach Betrachtung.

Spätere Erweiterbarkeit

Im Falle einer spahteren Erweiterung des Virtualisierungsteils, kohnnte man ja beim
Konzept OneFamaliy einfach einbinden ohne gross zu uhberlegen. Sollten aber
Maschinen einer noch neueren CPU – Generation ins Spiel kommen, so muhsste man sich
schon Gedanken uhber den immer grohsser werdenden Overhead machen.
Mohglicherweise wahre eine ToBig Strategie ratsamer fuhr die Zukunft.
Dieses Kriterium kann theoretisch beide betreffen, je nach Betrachtung.

Anschluss – Thematik

(Ethernet Ports)

Die Fujitsu haben eine Minimalausstattung an Ethernet Ports (4x je Node). Bei einem
einzigen Cluster wuhrde jede zusahtzliche VM, welche auf einen Fujitsu geschoben wird,
auch der Network Traffic steigen. Dies wuhrde Hardware – Aufstockungen zur Folge
haben, welche so eigentlich nicht vorgesehen sind.
Dieses Kriterium beeinflusst das Konzept ToBig.

Systemressourcen

Dieser Punkt betrifft auch die beiden Fujitsus. Wie bereits erwahhnt ist eine Hardware –
Aufstockung momentan nicht vorgesehen. Nun stellt sich die Frage, ob es Sinn machen
wuhrde die beiden Ressourcen einzubinden, wenn die Anzahl an zusahtzlichen VM's pro
Node gerade einmal 4 – 6 (je nach Dimension) betragen wuhrde.
Dieses Kriterium beeinflusst das Konzept ToBig.

Tabelle 14: Kriterien für die Nutzwertanalyse betreffs Konzepte OneFamily und ToBig

Diplomarbeit von Bogdanovic Theodor für die HFU 56

FullOpenSourceVirtualization

 7.3.1.2 Ermittlung des Gewichtungsfaktors für die einzelnen Kriterien (GWF)

 Im Vergleich zu
E

in
fa

ch
h

e
it

O
p

ti
m

a
le

 P
e

rf
o

rm
a

n
ce

Sp
ä

te
re

 E
rw

e
it

e
rb

a
rk

e
it

A
n

sc
h

lu
ss

 –
 T

h
e

m
a

ti
k

(E
th

e
rn

e
t

P
o

rt
s)

Sy
st

e
m

re
ss

o
u

rc
e

n

Summe
der

Bewertungs-
kriterien

Gewichtungs-faktor

Einfachheit 40% 50% 30% 30% 150% 15,00%

Optimale Performance 60% 50% 50% 80% 240% 24,00%

Spätere Erweiterbarkeit 50% 50% 70% 50% 220% 22,00%

Anschluss – Thematik 70% 50% 30% 60% 210% 21,00%

Systemressourcen 70% 20% 50% 40% 180% 18,00%

Der sich hieraus ergebende Umrechnungsfaktor → 1000 /

100 = 10 1000% 100%

Tabelle 15: Gewichtungsberechnung zur Wahl eines geeigneten Konzeptes (OneFamily vs. ToBig)

In der Tabelle zur Gewichtungsberechnung der Kriterien wurden diese aus den senkrechten Spalten

mit denen in den waagerechten Zellen verglichen. Hierbei sind die hellgrau markierten Werte die

jeweiligen Restwerte zu den rot markierten. Die Bewertung stellte immer die Frage, was ist wichtiger

aus der Perspektive vom waagerechten Kriterium zum senkrechten Kriterium. Je hohher der Wert des

waagerechten Kriteriums in der jeweiligen Zelle ist (% - prozentual), desto wichtiger ist der Punkt im

direkten Vergleich.

Diplomarbeit von Bogdanovic Theodor für die HFU 57

FullOpenSourceVirtualization

 7.3.1.3 Bestimmung des Zielerreichungsfaktors (ZEF)

Zur Bestimmung des Zielerreichungsfaktors wird ein Bewertungs- Range von 1 – 5 angewendet:

• 1 → Das Kriterium lahsst sich mit dem Konzept nicht erfuhllen.

• 2 → Das Kriterium lahsst sich mit dem Konzept nur mit erheblichen Schwierigkeiten erfuhllen.

• 3 → Das Kriterium lahsst sich mit dem Konzept erfuhllen. Es ist aber nicht die optimale Lohsung.

• 4 → Das Kriterium lahsst sich mit dem Konzept erfuhllen.

• 5 → Das Kriterium lahsst sich mit dem Konzept erfuhllen, es ist auch die beste Wahl
uhberhaupt.

Bewertungskriterien Konzept OneFamily Konzept ToBig

Einfachheit 5 2

Optimale Performance 3 5

Spätere Erweiterbarkeit 4 4

Anschluss – Thematik (Ethernet Ports) 3 5

Systemressourcen 3 4

Tabelle 16: Bestimmung des Zielerreichungsfaktors für die Nutzwertanalyse zur Wahl eines geeigneten Konzeptes
(OneFamily vs. ToBig)

An dieser Stelle gibt es keine weiteren Bemerkungen. Der Grossteil der Parameter ist in den Kriterien

erklahrt und wurde 1:1 zur Bestimmung der Zielereichungsfaktoren uhbernommen.

Diplomarbeit von Bogdanovic Theodor für die HFU 58

FullOpenSourceVirtualization

 7.3.1.4 Ermittlung des Endergebnisses anhand der vorliegenden Fakten

Konzept OneFamily Konzept ToBig

Bewertungskriterien GWF ZEF Ermitt. Wert ZEF Ermitt. Wert

Einfachheit 15,00% 5 75,00% 2 30,00%

Optimale Performance 24,00% 3 72,00% 5 120,00%

Spätere Erweiterbarkeit 22,00% 4 88,00% 4 88,00%

Anschluss – Thematik

(Ethernet Ports) 21,00% 3 63,00% 5 105,00%

Systemressourcen 18,00% 3 54,00% 4 72,00%

Gesamtnutzwert 352,00% 415,%

Tabelle 17: Ermittlung eines Siegers der Nutzwertanalyse zur Wahl eines Konzeptes (OneFamily vs. ToBig)

 7.3.2 Auswertung des Resultats

Wie aus Tabelle 17 herauszulesen ist, gewinnt das Konzept ToBig. Dies resultiert aus der starken

Tendenz, den Cluster so performancereich wie nur mohglich zu gestalten, bei zeitgleicher

Aufrechterhaltung der spahteren Erweiterbarkeit. Zugegeben wahre dem Autor an dieser Stelle das

Konzept OneFamily lieber gewesen, da es die Anzahl an Fine – Tuning – Konfigurationen erheblich

erleichtert hahtte, doch ist diese Lohsung performancetechnisch die bessere. Zugleich erleichtert sie eine

spahtere Erweiterbarkeit mit mohglicher modernerer Hardware (zusahtzliche Nodes), da sie eine breitere

Anzahl an Integrationsmohglichkeiten gewahhrt.

 7.4 Schlusswort zur Umsetzung

Anhand der Analysen der beiden noch offenen Fragestellungen mittels Nutzwertanalysen, ist klar das

ein Gesamtkonzept angestrebt werden muss, dass auf eine solide und erprobte Basis setzt sowie die

maximale Performance herausholen kann. Aus diesem Grund wird bei der Engine klar auf das in

Produktivumgebungen getestete und bekannte oVirt 3.5 gesetzt. Um die geforderte Performance

herauszuholen, heisst keinen grohsseren Overhead zu erzeugen, soll eine Lohsung gewahhlt werden,

welche mit der zur Verfuhgung stehenden Hardware eine sinnvolle Separierung ermohglicht. Dazu

werden die beiden Fujitsu Nodes in einen eigenen Cluster gekapselt. Die beiden Power – Maschinen

werden zum Zwecke der geforderten Live – Migration und des HA ebenfalls in eigene Cluster gekapselt.

Der bei den grossen Maschinen auftretende Overhead, welcher aus den unterschiedlichen CPU –

Familien resultiert, kann und muss aufgrund der Asymmetrie hingenommen werden. Diese

Asymmetrie ist gegeben und die hier gewahhlte Lohsung ist die geeignetste um sie auf ein Minimum zu

reduzieren.

Die genauen Spezifikationen des Lohsungsweges mit sahmtlichen Parametern folgen im anschliessenden

Kapitel.

Diplomarbeit von Bogdanovic Theodor für die HFU 59

FullOpenSourceVirtualization

 8 Realisierung / Aufbau eines virtualisierungs- Clusters

 8.1 Zweck und Umfang der Realisation

Dieser Abschnitt soll den gesamten Prozess der Realisierung so detailreich wie mohglich

dokumentieren. Zugleich wird versucht, diese Dokumentation so zu designen, dass sie auch als

Einrichtungsanleitung fuhr Dritte genutzt werden kann, welche diese Lohsung als

Referenzimplementierung nutzen wollen. Infoboxen werden an diversen Stellen wichtige Hinweise

liefern, aber auch Verzweigungen auf Alternativlohsungen bieten.

Die Dokumentation ist prinzipiell in drei Sektionen gegliedert. Die eigentliche Realisierung ist aber

aufgrund der unterschiedlichen Zwischenschritte in fuhnf Sektionen gegliedert. Die Genaue Gliederung

sieht dabei wie folgt aus:

• Einrichtung und Konfiguration des Netzwerksegmentes.

• Einrichtung und Konfiguration des Storagesegmentes.

• Einrichtung und Konfiguration des Virtualisierungssegmentes.

• Zusammenfuhhrung der einzelnen Komponenten zu einem als Cluster operierenden Objekt.

• Fine – Tuning; Konfiguration der fuhr das Layout nohtigen Vorlagen, Ressourcen ggf. Benutzer etc.

Aufgrund der starken Verflechtungen der einzelnen Konfigurationsschritte kann es vorkommen, dass

einige Punkte dennoch in fremden Segmenten vollzogen werden muhssen. Diese Spezialfahlle werden bei

Bedarf hervorgehoben.

 8.2 Allgemeine Vordefinition

Der Prozess der Verkabelung wird an dieser Stelle nicht spezifisch beschrieben, sondern als erledigt

angesehen.

Die verschiedenen Installationen der Betriebssysteme werden auch nicht ausfuhhrlich erklahrt. Es wird

jeweils nur ein Link zur ersten deutschsprachigen Installationsanleitung hinterlegt, welche mittels

→Google – Anfrage gefunden wurde. Sollten spezielle Schritte bei einer OS – Installation notwendig

sein, so werden diese genauer beschrieben.

Diplomarbeit von Bogdanovic Theodor für die HFU 60

FullOpenSourceVirtualization

 8.3 Spezielles in Kürze

An dieser Stelle soll ein kurzer Exkurs in Richtung eher unbedeutender, aber dennoch

erwahhnenswerter Punkte der realen Umsetzung erfolgen. Dies betrifft folgende beiden Punkte:

• Erstellung eigener Trahgerschienen fuhr das Rack.

• Beschriftungskonzept der Verkabelung

Die Erstellung der Trahgerschienen fuhr das Rack Marke, Eigenbau ist zwar ein simpler und kurzer

Zuschneideprozess der Schienen und kleinerer Teile der Finger, ist aber dennoch Teil dieser Arbeit und

soll daher erwahhnt werden. Hierbei handelt es sich um einfache Winkelprofilschienen von 4x4 cm,

welche auf die Lahnge des Racks zugeschnitten wurden. Aus den Resten der Schienen wurden kleine

Winkel zugeschnitten, die als Halterungen an den Ende mit Schrauben fixiert wurden. In

nachfolgender Abbildung ist eine solche Montageschiene in montiertem Zustand ersichtlich.

Zur Beschriftung der Kabel wurde ein positions- und funktionsabhahngiges Verfahren gewahhlt. Diese

Beschriftung ist jeweils auf beiden Seiten gleich und orientiert sich an den Anschluhssen seitens der

Computer – Anschluhsse. In nachfolgender Abbildung ist ein Beispiel ersichtlich:

Diplomarbeit von Bogdanovic Theodor für die HFU 61

Abbildung 8: Selber erstellte Montageschiene für das Rack

FullOpenSourceVirtualization

Wie im oberen Beispiel zu sehen ist, umfasst die Beschriftung vier Segmente.

R1-UU2-C1-P1

Hierbei arbeitet sich die logische Reihenfolge von links nach recht, ahquivalent zum eigentlichen Objekt

durch. Dies bedeutet:

• R1 → Steht fuhr das Rack, in dem sich die Maschine befindet.

• UU2 → Sagt aus, dass es sich um eine Universal Unit handelt, welche die Position 2 im Rack

von unter her gezahhlt handelt.

◦ UU → Universal Unit ist meistens ein Hypervisor – Host, kann aber auch eine andere

Funktion haben, welche sich nicht mit einer der anderen Hauptfunktionen des Clusters

uhberschneidet.

◦ SU → Storage Unit ist die regulahre Bezeichnung fuhr eine Clusterkomponente, welche NUR

Cluster Storage zur Verfuhgung stellt.

• C1 → Card 1 beschreibt die Position des Kabels in Bezug auf die Netzwerkkarte. Hier ist

dies die erste Karte (PCI Steckplatz 1). Die Zahl steigt ahqivalent mit der Position der Karte in

Bezug auf die PCI – Steckposition.

◦ CO → Card Onboard beschreibt die sich auf dem Mainboard befindlichen Ports als

gesamtes.

• P1 → Port 1 beschreibt die Position des Kabels innerhalb der Netzwerkkarte selbst, also

den Ethernet Port. Dabei gilt; senkrecht stehende Netzwerkkarten werden von unten nach

oben gezahhlt, waagrecht stehende Karten werden von hinten betrachtet immer von links nach

rechts gezahhlt.

Diese Beschriftung erlaubt aufgrund ihrer Positionsabhahngigkeit das schnelle finden der einzelnen

Komponenten von der Firewall oder dem Switch aus. Zusahtzlich bleibt das Auswechseln der

Komponenten mohglich, da eine allfahllige neue Komponente den Platz der alten einnimmt und somit die

Beschriftung erhalten bleibt.

Diplomarbeit von Bogdanovic Theodor für die HFU 62

Abbildung 9: Beispiel einer Kabelbeschriftung mit dem angewendeten Beschriftungskonzept.

FullOpenSourceVirtualization

 8.4 Beginn mit der Realisation des Netzwerksegmentes

In diesem Abschnitt sollen alle notwendigen Schritte im Top – Down Verfahren aufgezeigt werden,

welche notwendig sind, um das Netzwerksegment in einer Einzelbetrachtung aufzusetzen und zu

konfigurieren. Dieser Teil umfasst folgende beiden Kernpunkte:

• pfSense; Installation, Konfiguration, Buhndelung der Interfaces in Link Aggregation, Bildung

einer Bridge und Erstellen erster Firewall Regeln.

• Switch; Hier speziell nur die Montage und die Verkabelung.

 8.4.1 Die verwendete Hardware

Zum Realisieren der Firewall mittels pfSense wird ein alter und gebrauchter Server mit folgenden

Spezifikationen verwendet:

• IBM System x3650 M2

◦ Dual CPU, Intel Xeon E5520, 2,27GHz, 16 Cores Total

◦ RAM → 24 GB

◦ 4x Intel Server Netzwerkkarte – 4x Port je Karte → Total 16 + 2 (Onboard) = 18 Ports

Fuhr das Management – Network, welches die Nodes (inkl. Storage) miteinander verbindet, wird ein

simpler, ungemanagter Switch verwendet. Die Trennung von der Cluster – Kommunikation zum

restlichen Netzwerk, aber speziell vom Netzwerk der VM's, soll auf diese Weise eine 100%-ige

Isolierung ermohglichen. Der hierfuhr verwendete Switch hat folgende Spezifikationen:

• Tenda TEG1024D

◦ 24-Port Gigabit Switch

Zur Verkablung aller Komponenten wird ein Standard CAT 6 Patchkabel mit RJ45 Steckern verwendet.

Die Kabel konnten mit optimaler Lahnge verlegt werden, da die Montage des RJ45 durch den Autor

selbst Vorgenommen wurde.

 8.4.2 Beginn mit der Installation und Konfiguration von pfSense

Die Installation von pfSense selbst ist eine der einfachsten Sachen uhberhaupt. Der Start von der

Installations- CD fuhhrt einen direkt in ein „ncurses“ gestaltetes Menuh, welches einen neben ersten

elementaren Fragen bezuhglich Tastatur – Layout (deutsches Layout nicht vorhanden) gleich in ein

wichtiges Menuh fuhhrt. Hier kann einfach „Quick/Easy Install“ gewahhlt werden. Man muss nur noch

bestahtigen, dass der Installer automatisch partitioniert soll und dabei alle bestehenden Daten auf der

Festplatte lohschen kann. Die nahchste relevante Frage seitens Installer ist, ob ein Standard – Kernel oder

ein Embedded – Kernel gewahhlt werden soll. Da hier ein Standard x86_64 Prozessor verwendet wird,

muss Standard – Kernel gewahhlt werden. An dieser Stelle muss nur noch auf das Installation – Ende

gewartet werden. Nach einem Reboot, startet pfSense in die typische Auswahlkonsole, welche einige

Konfigurationsmohglichkeiten bezuhglich Interfaces, Adresseingaben und einige WebGUI bezogene

Einstellungen ermohglicht. In der Auswahlkonsole wahhlt man nun die Option 1 „Assign Interfaces“. Hier

fragt der Assistent zuerst nach den Parametern der WAN Schnittstelle und bietet auch gleich an, das

Diplomarbeit von Bogdanovic Theodor für die HFU 63

FullOpenSourceVirtualization

LAN Interface zu konfigurieren. Die Konfiguration des LAN Interfaces muss an dieser Stelle klar

abgelehnt werden. Der Grund ist, dass pfSense beim Erkennen einer LAN – Schnittstelle auch gleich die

Anti – Lockout Rule ins LAN schreibt und das WAN per Default auf Port 80/443 sperrt. Der Autor

dieser Arbeit hatte aber bei ahlteren Versionen von pfSense schlechte Erfahrungen in Bezug auf die LAN

Konfiguration aus der Auswahlkonsole gemacht und nutzt lieber das GUI. Auf diese Art kann das WAN

Interface zum Login und zur anschliessenden Konfiguration genutzt werden. Loggt man sich mit einem

aktiven Interface ein (WAN), so kommt man direkt zum Wizard. Dieser stellt einige elementare Fragen

zu den Parametern wie IP – Adresse, NTP – Server, DNS – Server etc. Hier ist Hauptsahchlich die IP –

Adresse (oder DHCP) von entscheidender Bedeutung, alles andere kann theoretisch auf den jeweiligen

Standardwerten belassen oder leer gelassen werden. Nach Beendigung des Wizards kommt man zum

Steuer – GUI.

Nach Erstellung der WAN bezogenen Anti – Lockout Rule kann das LAN Interface alloziert und eine

geeignete IP inkl. Subnetz vergeben werden. Dieser Teil ist nicht relevant fuhr die Arbeit. Er gefahhrdet

die Sicherheit der eigenen privaten Infrastruktur, weswegen die LAN Konfigurationserlahuterung an

dieser Stelle abgebrochen wird.

Auf die Erklahrung der restlichen Parameter wird an dieser Stelle verzichtet, da sie fuhr den weiteren

Verlauf dieser Arbeit nicht relevant sind.

 8.4.2.1 Konfiguration der Link Aggregationen

 8.4.2.1.1 Erstellen der Link Aggregation

Als Arstes muhssen die Link Aggregationen erstellt werden, welche den Virtualisierungsnodes bzw. den

VM's die Netzwerkkonnektivitaht garantieren. Hierzu sollen die beiden grossen Maschinen mit je drei

Ports nach IEEE 802.3ad gebuhndelt werden. Dies ist unter pfSense bzw. uhber das WebGUI mehr als

einfach. Um in das entsprechende Konfigurationsmenuh zu gelangen, klickt man sich wie nachfolgend

beschrieben durch:

Hier wahhlt man das Hinzufuhgen – Symbol aus. In der Liste Parent Interface klickt man auf die

Interface Namen, welche man zur neuen Aggregation hinzufuhgen mohchte. Anschliessend sucht man

sich in der Liste Lag proto das Verfahren aus, nach dem die Last verteilt werden soll. In diesem Fall

LACP, da wir eine intelligente Lastverteilung wollen, die sich kontinuierlich mit den Nachbarn

Diplomarbeit von Bogdanovic Theodor für die HFU 64

ACHTUNG!

Es emp#ehlt sich bei dieser Methode eine An -Lockout Rule auf das WAN zu legen. Dem

Autor dieser Arbeit geschieht es auch heute noch, dass er das LAN einbindet und ak viert,

aber vergisst, eine IP zu vergeben. So sperrt man sich auf peinlichste Art komple< aus.

Befehl 1: Realisierung des Netzwerksegmentes (Klicken): Erstellung einer Link Aggregation mit LACP als
Algorithmus.

Interfaces → (assign) → LAGG

FullOpenSourceVirtualization

abspricht. Ein kleiner Kommentar unter Description ist immer zu empfehlen. Mit einem Klick auf

Save ist die ganze Arbeit eigentlich schon getan. Dieses Verfahren nach IEEE 802.3ad verspricht die

grohsste Performance, da beide Seiten untereinander stets die Last optimal aufteilen. Das exakte

Verfahren, nach dem diese Berechnungen stattfinden, ist nicht bekannt. Dies spielt aber ohnehin keine

Rolle, da es auf keiner Seite beeinflussbar ist. Nachfolgend, des besseren Verstahndnisses halber, ein

Screenshot des Konfigurationsmenuhs:

 8.4.2.1.2 Einbinden der Link Aggregation

Bei pfSense ist es so, dass das Erstellen eines Objektes nicht bedeutet, dass es auch aktiv ist. Man muss

es stets in einem zweiten Schritt dem System (hier speziell der pfSense – Engine) auch bekanntgeben.

Hier der Klick – Weg zum Konfigurationsmenuh:

Diplomarbeit von Bogdanovic Theodor für die HFU 65

Befehl 2: Realisierung des Netzwerksegmentes (Klicken): Einbinden der Link Aggregation in System

Interfaces → (assign) → Interface assignments

Abbildung 10: Realisierung des Netzwerksegmentes: Erstellung einer Link
Aggregation auf pfSense

FullOpenSourceVirtualization

Auf dieser Seite findet man eine Liste mit den bereits integrierten Interfaces, darunter auch WAN und

LAN. Hier findet man am Ende eine Auswahlliste unter Available network port, wo man die LAGG

Interfaces (Description ist auch ersichtlich) auswahhlen kann. Mit einem Klick auf das kleine

Hinzufuhgen Symbol wird das neue Interface erstellt. Nun muss man den neuen Interface Namen

anklicken um auf die Konfigurationsseite zu gelangen. Hier muhssen folgende Einstellungen

vorgenommen werden:

• Enable → Das neue Interface muss eingeschaltet werden.

• Description → Hier unbedingt einen aussagekrahftigen Namen vergeben. Dieser wird spahter

auch uhberall als Auswahlname ersichtlich sein.

• IPv4 Configuration → Muss auf None stehen. Da dieses Interface spahter Teil einer Bridge sein

wird, braucht es keine IP.

• IPv6 Configuration → Sollte auch dringendst auf None stehen, falls kein IPv6 verwendet wird

(Sicherheitsluhcke).

Dies war es schon, die beiden Link Aggregationen sind nun aktiv und im Dashboard bereits als „nicht

angeschlossen“ ersichtlich.

Nachfolgend ein Screenshot einer Referenzkonfiguration:

Warum aber drei gebuhndelte Ports? Da beide Maschinen dieser Grohssenklasse je acht Ethernet Ports

besitzen und mindestens zwei fuhr die interne Kommunikation wegfallen, bleiben nach Erstellung der

LACP Link Aggregation noch drei uhbrig. Sollten noch spezifische Separierungen (netzwerkseitige

Isolierung) von bspw. hoch sicheren Maschinen in der Zukunft notwendig werden, wuhrden immer

noch drei Ports zur Verfuhgung stehen. Es kann aber auch sein, dass die Endleistung (Traffic) nicht den

gefuhhlten Vorstellungen entsprechen wuhrde, dann wahre, wie schon gesagt, immer noch Spielraum nach

oben.

Diplomarbeit von Bogdanovic Theodor für die HFU 66

Abbildung 11: Realisierung des Netzwerksegmentes: Einbinden der Link Aggregation ins System
(aktivieren)

FullOpenSourceVirtualization

 8.4.2.2 Konfiguration der Einzelinterfaces

Als Nahchstes muhssen noch die pfSense spezifischen Interfaces der lastungsarmen Fujitsu Maschinen

konfiguriert werden, welche Bestandteil des grossen „Switches“ werden sollen. Hier genuhgt je ein

Interface pro Node. In der nachfolgenden Box ist der Klick – Weg zum Konfigurationsmenuh ersichtlich:

Da hier keine speziellen Pseudointerfaces im Vorfeld erstellt werden muhssen, genuhgt die Bekanntgabe

der neuen Interfaces in Richtung pfSense. Dieser Schritt ist ahquivalent zum vorhergegangenen Punkt

8.4.2.1.2 „Einbinden der Link Aggregation“. Hier kann man einfach das gewuhnschte reale Interface

bspw. igb6 in der Auswahlliste wahhlen und das in pfSense manchmal schlecht ersichtliche Hinzufuhgen

Symbol anklicken. Im nun erscheinenden Konfigurationsmenuh, welches wie jenes in Abbildung 11

aussieht, muss man wieder einen aussagekrahftigen Namen wahhlen. Eine IP – Adresse ist auch hier

nicht notwendig.

Dies war es auch schon mit der Einrichtung der Interfaces, welche spahter den Virtualisierungsnodes

bzw. den VM's als Netzwerk / Internet – Zugang dienen sollen. Technisch gesehen sind die vier neuen

Interfaces auch im Independent – Zustand nutzbar. Hierfuhr muhssten nur noch die Layer 4 Parameter

gesetzt werden. Diese Konfiguration wahre aber fuhr spahtere Firewall – Regeln sehr umstahndlich und

auch bei grohsseren Regelsahtzen kaum mehr uhberschaubar. Ideal wahre eine Adresse mit einem Subnetz,

das sich spahter, in Hinblick auf den Gesamttraffic, besser isolieren lahsst. Diese Ideallohsung wird im

nachfolgenden Subpunkt geklahrt.

 8.4.2.3 Konfiguration des „Soft“- Switches

Um die vier Independent – Interfaces (LAGG0, LAGG1, single1_xnode2 und single2_xnode3) nicht

muhhsam in Einzelarbeit konfigurieren zu muhssen, soll an dieser Stelle eine Bridge erstellt werden.

Diese Bridge vereint die vier Interfaces zu einem logischen Verbund von Interfaces, wo das

Unbermitteln der Pakete zwischen zwei VM's auf zwei unterschiedlichen Nodes mittels ARP

entschieden werden kann. Zusahtzlich kann der Bridge hier das erste Mal eine IP – Adresse mit den

dazugehohrigen Parametern uhbergeben werden, welche den spahteren VM's, aber auch allen externen

Aufrufen, einen eindeutigen Zielpunkt liefert. So kann bspw. eine Verbindungsanfrage vom privaten

Segment aus dem LAN, welche eine IP – Adresse einer VM als Ziel hat, die sich im Subnetz der Bridge

befindet, auch geroutet werden. Von der Gegenseite wird eine VM immer die Bridge – IP als Default

Gateway und somit als primahren Ansprechpartner haben.

Diese Konfiguration bietet zwei elementare Vorteile. Erstens ist die Isolierung des VM – Networks

gegenuhber allem, was auf der Firewall an Netzwerken vorhanden ist, besonders einfach umsetzbar.

Zweitens bleiben die vier Interfaces der Bridge weiterhin im Zustand „Standalone“, was spezifische

Regelsahtze ermohglicht fuhr VM's, die bspw. statisch sind und stets auf dem gleichen Node arbeiten.

Diplomarbeit von Bogdanovic Theodor für die HFU 67

Befehl 3: Realisierung des Netzwerksegmentes (Klicken): Einbinden einzelner Interfaces ins System.

Interfaces → (assign) → Interface assignments

FullOpenSourceVirtualization

 8.4.2.3.1 Erstellen der Bridge

Das Erstellen der Bridge ahhnelt dem Verfahren der Link Aggregation – Erstellung. Man klickt

folgendermassen:

Hier wahhlt man wieder das Hinzufuhgen – Symbol und landet anschliessend im Konfigurationsfenster.

Hier kann man in der Auswahlliste die Interfaces auswahhlen, welche spahter in der Bridge vereint

werden sollen. Auch hier empfiehlt sich wieder, einen aussagekrahftigen Name unter Description

einzugeben. Hinter dem Button Show advanced options verbirgt sich ein gutes Beispiel fuhr die hohe

Macht von pfSense. Hier kohnnen neben einigen allgemeinen Optionen, auch eine grosse Anzahl an

Spanning – Tree Optionen gesetzt werden. Man sieht also, dass pfSense ohne weiteres als vollwertiger

Switch verwendet werden kann.

Nach dem bestahtigen mit Save ist die neue Bridge im System angelegt. Wie aber bei pfSesne uhblich,

genuhgt dies meist nicht. Die Bridge muss noch dem System als aktive Komponente bekanntgegeben

werden.

 8.4.2.3.2 Einbinden der Bridge

Dies Prozess wird wieder uhber Interface assignments abgewickelt. Hierzu klickt man wieder in

Richtung:

Hier findet man nun in der Auswahlliste die neu angelegte Bridge, welche entsprechend ausgewahhlt

und mit Hinzufüge angemeldet wird. Auch hier geht man mittels Klick auf den Name in das

Konfigurationsmenuh des neuen Interfaces. Wie allgemein bekannt, kann an dieser Stelle ein Interface

Diplomarbeit von Bogdanovic Theodor für die HFU 68

Befehl 4: Realisierung des Netzwerksegmentes (Klicken): Erstellen der Bridge mit Angabe der dazugehörigen
Interfaces.

Interfaces → (assign) → Bridges

Befehl 5: Realisierung des Netzwerksegmentes (Klicken): Einbinden der Bridge ins System.

Interfaces → (assign) → Interface assignments

Abbildung 12: Realisierung des Netzwerksegmentes: Einbinden der Bridge ins System (aktivieren)

FullOpenSourceVirtualization

Name vergeben und das Interface mit Hahkchen auf Enable Interface in Betrieb genommen werden. An

dieser Stelle wird das erste Mal eine IP – Adresse vergeben, hier 10.100.100.1/22. Warum gerade diese

wird nachfolgend erklahrt.

Dies war schon die gesamte Konfiguration. Von nun an hat man einen Switch, welcher von aussen vier

Ports hat, wobei zwei Ports auf je drei Reale balanciert werden. Im nachfolgenden Screenshot ist ein

Konsolen – Ausschnitt ersichtlich, welcher die gesamte Konfiguration der Bridge / des Switches zeigt.

Die dort ersichtlichen Punkte wie root ID, priority oder hellotime sind bei FreeBSD Systemen per

Default ersichtlich, haben aber keinen Einfluss, solange Spanning Tree nicht spezifisch aktiviert

wurde.

 8.4.3 Das Adress – Design

Das IP – Adressschema wurde nicht spezifisch in einer Analyse auf bestmohgliche Ausnutzung ermittelt.

Es folgt einer Standard Deklaration, welche der Autor im Allgemeinen verwendet. Hierbei werden

immer interne Adressen aus der privaten A – Klasse verwendet. Dabei wird stets mit kleinen

Nummern begonnen und bei logischen Segmentuhbergahngen, welche von sich aus eine Isolierung

benohtigen, ein entsprechend grosser Sprung vorgenommen. Hier ein Beispiel:

• LAN ←→ WLAN1 haben eine direkte logische Verbindung bezuhglich Kommunikation: Dies

bedeutet eine hohe Regelzahl zum Filtern, was sich in kleinen Nummerierungsspruhngen

widerspiegelt → LAN 10.0.10.0/24, WLAN1 10.0.30.0/28

• LAN ←→ VMBRIDGE0 (bridge0) haben theoretisch keine logische Verbindung im Alltag

(hohchstens Wartung): In diesem Fall soll eine oder eine kleinere Anzahl an Regelsahtzen den

Verkehr massiv einschrahnken oder sogar absolut stoppen. Dies fuhhrt zu grossen

Nummerierungsspruhngen wie bspw. → LAN 10.0.10.0/24, bridge0 10.100.100.0/22

• Eine spezielle Ausnahme sind Konstellationen, welche zwar eine hohe Isolierung benohtigen

aber dennoch mehr Zugriffe erzeugen als eine simple Wartung. Ein solches Beispiel wahre die

Verbindung von LAN zum Management – Teil des Clusters. Dies widerspiegelt sich auch im

zweiten Block der IP, wie es im oberen Beispiel ersichtlich ist. Jedoch ist hier die Nummer

nahher am privaten Teil → LAN 10.0.10.0/24, MGMTBYPASS 10.10.10.1

Diplomarbeit von Bogdanovic Theodor für die HFU 69

Abbildung 13: Realisierung des Netzwerksegmentes: Screenshot der fertigen Bridge

FullOpenSourceVirtualization

Der dritte IP – Adressblock dient der weiteren Separierung des jeweiligen Segmentes. Hier wird meist

nach Augenmass gearbeitet . Die Nummern werden so gewahhlt, dass im Falle eines DNS Ausfalles ein

einfaches Erinnern mohglich ist.

Hier die Adressschema Tabelle:

Interface Name Netz – ID Subnetzmaske Domainname
Max.
Hosts

Bemerkung

Bouncer1.localdom 10.0.10.1 -
Main

Multi Multi Multi Diese Firewall

LAN 10.0.10.0 255.255.255.0 localdom 254 Privater Teil: An dieser Stelle
erfolgen aus Sicherheitsgründen

keine weiteren Angaben.

WLAN1 10.0.30.0 255.255.255.248 localdom 14 Privater Teil: An dieser Stelle

erfolgen aus Sicherheitsgründen
keine weiteren Angaben.

MGMTBYPASS 10.10.10.0 255.255.255.0 mgmtdom 254 Dieser Teil verbindet alle
Komponenten des Clusters, das

heisst, dass oVirt Management
Netzwerk und die Storage

Komponenten.

VMRIDGE0 10.100.100.0 255.255.252.0 vmdom 1022 In diesem breiten Range, werden

später die IP's der VM's vergeben.
Eine zusätzliche Segmentierung

mittels VLAN ist theoretisch
möglich, es wird aber darauf

verzichtet.

Tabelle 18: Realisierung des Netzwerksegmentes: IP - Adressschema

 8.4.4 Erster Blick auf die Sicherheit

In dieser Sektion der Realisierung kohnnen die ersten Regeln bezuhglich der Isolierung des Management

teils und des Virtualisierungs- Teils in Bezug auf den privaten Teil des Gesamtnetzwerkes gemacht

werden. Hierfuhr sollen drei Regelsahtze definiert werden, welche wie in nachfolgender Tabelle

ersichtlich, den Datenverkehr stark begrenzen oder gahnzlich unterbinden.

Anmerkung: Der Einfachheit halber werden die Interfaces LAN und WLAN1 innerhalb der Tabelle in

das real nicht existierende Pseudointerface PRIVATE zusammengefasst.

Nr.: Interface Beziehung
Proto
koll

Source
Sour.
Port

Destination
Dest.
Port

Gesetzt auf
Interface

AKTIO
N

1 VMBRIDGE0 → PRIVATE IPv4 ANY ANY ANY ANY VMBRIDGE0 BLOCK

2 VMBRIDGE0 →MGMTBYPASS IPv4 ANY ANY ANY ANY VMBRIDGE0 BLOCK

3 MGMTBYPASS→PRIVATE IPv4 ANY ANY ANY ANY MGMTBYPASS BLOCK

Tabelle 19: Realisierung des Netzwerksegmentes: Regelsatzschema zu den notwendigen Regeln

Diese drei Regeln sollen angewendet werden, um eine Isolation zwischen dem VM – Netzwerk und

Management – Netzwerk gegenuhber dem PRIVATE Netzwerk zu ermohglichen. Zusahtzlich soll auch eine

klare Isolation zwischen dem VM – Netzwerk und dem Management – Netzwerk erzeugt werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 70

FullOpenSourceVirtualization

Nun ist die Regelkonfiguration aufgrund der bei pfSense per Default aktiven Stateful Packet

Inspection nicht ganz einfach nachzuvollziehen. Aus diesem Grund analysieren wir die drei Regeln

anhand der Nummern innerhalb der Tabelle 19.

Die nachfolgenden Konfigurationen werden im Firewall – Konfigurationsmenuh vorgenommen. Hierzu

klicken wir wie folgt:

Regeln 1 nach Tabelle 19: Kein Zugriff von VMBRIDGE0 zum privaten Teil des Netzwerkes.

Umgekehrt soll es aber weiterhin mohglich sein:

Die Firewall – Tabellen sind beim Erstellen von Interfaces bzw. beim Einbinden stets leer. Um die

Bedingungen von Regel 1 nach Tabelle 19 zu erfuhllen, sind die oben ersichtlichen Regelsahtze

notwendig. Hierfuhr muss man wissen, dass pfSense eine pro Interface stets nicht ersichtliche Regel

besitzt, welche den outgoing Verkehr komplett sperrt (deny any to any). Prinzipiell kann man die

Liste leer lassen und somit die innerhalb dieses Interfaces eingeschlossenen Hosts komplett isolieren.

Dennoch ist es weiterhin mohglich, sich von aussen auf die sich darin befindlichen Host zu connecten.

Nun stellt sich die Frage, wieso der outgoing Verkehr zuruhck zum externen Abfragepartner gelangen

kann. Dies funktioniert deswegen, weil die Stateful Inspection den outgoing Verkehr mit dem Flag

Established markiert. So weiss die Firewall, dass der Verkehr ausnahmsweise das Interface verlassen

kann, da hier vorgahngig eine zulahssige Verbindung von aussen aufgebaut wurde. Im Grunde muss man

bei pfSense stets auf dem Interface, von welchem aus man eine Verbindung Richtung outgoing

herstellen mohchte, Regeln setzen, welche sagen, ob dies geht oder nicht. Setzt man eine Allow any to

any, so wird die letzte unsichtbare Allgemeinsperre bei dieser First – Match Firewall ausgehebelt.

Diplomarbeit von Bogdanovic Theodor für die HFU 71

Befehl 6: Realisierung des Netzwerksegmentes (Klicken): Der Weg zum Menü der Firewall - Regelkonfiguration.

Firewall → Rules → Wahlweise - VMBRIDGE0

 - MGMTBYPASS

Abbildung 14: Realisierung des Netzwerksegmentes: Konfiguration von VMBRIDGE0

FullOpenSourceVirtualization

Daher ist es ratsam, diese Allow – Direktive immer zuletzt, oder an der wirklich geeigneten Stelle, zu

setzen. Ansonsten kann es sein, dass einige Regeln umgangen werden.

Beginnen wir mit der Analyse der Regeln in Abbildung 14 (Top – Down):

• Die erste Regel sagt der Firewall, dass jeglicher Verkehr uhber alle Protokolle und alle Ports

nicht in Richtung LAN gehen darf.

• Die zwei Regel entspricht der vorgahngigen, jedoch auf das Management – Netzwerk bezogen.

• Die drei Regel schliesst sich dem Konzept der beiden vorgahngigen an.

• Die vier Regel erlaubt sahmtlichen Verkehr nach aussen uhber das Interface VMBRIDGE0. Da

aber nach dem First – Match Verfahren die oberen Regeln zum Zuge gekommen wahren, kann an

dieser Stelle nur das „Any“ Interface genutzt werden. Dies bedeutet in der pfSense Welt, der

Verkehr darf das WAN bzw. in diesem Fall, das NAT nutzen, um ins Internet zu gelangen.

• Die fünf Regel gibt die Erlaubnis fuhr ICMP ins Internet. Dies ist ein Standard – Vorgehen des

Autors, um Debuggen leichter zu gestalten. Da der ICMP Verkehr aber weder in den isolierten

Bereichen noch vom Internet her ohne Einwilligung des NAT fliessen kann, ist diese Regel

sicherheitstechnisch unbedenklich.

Regeln 2 nach Tabelle 19: Kein Zugriff von VMBRIDGE0 zum MGMTBYPASS.

Um absolute Sicherheit zu gewahhrleisten, hat Kommunikation zwischen dem Virtualisierungsteil und

dem Management – Teil nicht statt zu finden, sie ist vollkommen unnohtig.

Hier kann auf Regel 1 referenziert werden, da sie die Kommunikation in Richtung MGMTBYPASS

ebenfalls unter den gleichen Bedingungen sperrt wie fuhr das LAN.

Regeln 3 nach Tabelle 19: Kein Zugriff von MGMTBYPASS zum privaten Teil des Netzwerkes.

Umgekehrt soll es aber weiterhin mohglich sein.

Die Situation hier ist etwas heikler als beim VMBRIDE0 Interface. Die Maschinen innerhalb des

Clusters sollen von sich aus keine Verbindung zum privaten Teil haben. Sie sollten auch nicht

unbedingt frei mit dem Internet kommunizieren kohnnen. Wenn uhberhaupt, soll nur der Admin

Diplomarbeit von Bogdanovic Theodor für die HFU 72

Abbildung 15: Realisierung des Netzwerksegmentes: Konfiguration von MGMTBYPASS

FullOpenSourceVirtualization

kontrolliert mit den einzelnen Maschinen zwecks Updaten ins Internet kohnnen. Die Maschinen sollen

aber eine gewisse Bequemlichkeit bezuhglich Namensauflohsung und anderer Dienste aufweisen, wie

etwa das Abgleichen der Zeit mit dem zentralen NTP – Server auf der Firewall. Es soll also maximale

Sicherheit trotz einer Vielzahl an Ausnahmen realisiert werden. Die in Abbildung 15 erstellten Regeln

werden den genannten Forderungen gerecht.

Sehen wir uns nun die genaue Analyse der Regelsahtze anhand der Regeln in Abbildung 15 an (Top –

Down):

Die erste Regel dient dem Updaten der Maschinen und ermohglicht erst bei Aktivierung den Zugang ins

Internet. Da pfSense nach dem First – Match Verfahren arbeitet, hebelt diese Regel alle andern aus, was

einen massiven Sicherheitsverstoss darstellt. Aus diesem Grund soll die Regel auch nur zu

Updatezwecken genutzt werden.

Die zweite Regel ist in dieser Form ganz speziell und wahre im Normalfall nicht notwendig. Fuhr sie

wurde unter:

ein Alias Verweis erstellt, welcher den Namen ALLowed_special_from_mgmtdom trahgt. Hier ist die IP

– Adresse der oVirt – Engine hinterlegt, welche so unter einer einheitlichen Namenskategorie bequem

nutzbar ist und bei Bedarf mit noch weiteren Hosts aufgefuhllt werden kann. Dieser Alias erlaubt der

oVirt – Engine den vollen Internetzugang. Dies wurde notwendig da die Engine bzw. der Java

Applicationserver Schwierigkeiten bei der Isolation des Interfaces zeigte. Hier wird vermutet, dass der

Applicationserver mehrere Verbindungen in Richtung Client aufbaut und die State Table von pfSense

deswegen nicht schnell genug mit den Statusmeldungen umgehen konnte. Dies fuhhrte zu Aufbauzeiten

des WebGUI's von ca. 40 – 60 Sekunden, was als untragbar eingestuft wurde. Deswegen wird diese Any

to Any Regel, welche als effizienteste getestet und bestahtigt wurde, so hingenommen (trotz der

theoretischen Sicherheitsluhcke, die daraus resultiert.)

Die dritte Regel entspricht dem, was auch bezuhglich Sicherheit angestrebt werden sollte. Auch fuhr

diese Regel wurde ein Alias angelegt namens Nodes_form_Datacenter_R1, welcher alle Nodes des

Clusters abzuhglich der Engine enthahlt. Diese Regel besagt, dass NUR diese Maschinen direkten Zugriff

auf das Interface MGMTBYPASS haben und somit die Dienste, welche auf der IP des Interfaces horchen,

nutzen kann. Ein Host, der irgendwie in das Interface eindringen kohnnte, ist komplett isoliert. Hier

muss noch gesagt werden, dass bei pfSense ein Zugriff auf das Interface und somit auf den Default

Gateway nicht bedeutet, dass die Maschine auch ins Internet darf. Denn ein allfahlliger Aufruf auf eine

Public IP aus diesem Interface, bedeutet laut Regel nur, dass der Verkehr bis zum Interface darf, nicht

aber daruhber hinaus. Nur eine Any to Any Regel besagt, dass der Verkehr auch uhber das Interface

geroutet bzw. geNATet werden darf.

Diplomarbeit von Bogdanovic Theodor für die HFU 73

Befehl 7: Realisierung des Netzwerksegmentes (Klicken): Erstellung eines IP - Adressalias

Firewall → Aliases → IP

FullOpenSourceVirtualization

 8.4.4.1 Die Members der Bridge

Die Interfaces LAGG_OVN1, LAGG_OVN4, SINGLE1_XNODE2 und SINGLE2_XNODE3 sind zwar

Menbers der BRIDGE0, kohnnen und muhssen teilweise sogar eigenstahndig konfiguriert werden. Fuhr eine

Reibungslose Kommunikation der VM's untereinander, ist es notwendig den Verkehr entsprechend zu

erlauben. Hier muss aber nicht jedes Interface bzw. Buhndelung einzeln auf die bestimmten Ziele

konfiguriert werden. Primahr muss jede Datenverbindung nur in Richtung der Bridge zeigen, die Bridge

beinhaltet die Regeln welche Guhltigkeit besitzen. Im Klartext bedeutet dies, dass wenn eine VM aus

einem Fujitsu Node mit einer anderen kommunizieren will, welche bspw. auf dem Dell arbeitet, so

muss der Fujitsu Node immer in Richtung Bridge adressieren. Die Bridge entscheidend anhand ihrer

Regelsahtze ob dies erlaubt ist und biegt den Datenverkehr uhber einen internen Link zum eigentlichen

Interface hin. Somit muhssen folgende Regelen auf allen oben genannten Independent – Interfaces

angewendet werde, um die Switching – Funktionen eines Switches zu ermohglichen.

Die obere Regel ist die typische Debugging – Regel, welche das Pingen im Netzwerk ermohglichen soll.

Die zweite Regel ist die entscheidende, denn sie erlaubt es den VM's sich uhber die physischen grenzen

der einzelnen Maschinen hinweg zu bewegen. Eine VM die bspw. in den privaten Bereich routen will,

wird an dieser Stelle aufgehalten, da sie lediglich zum pseudo- Interface BRIDGE0 verbinden darf. Ob

die Bridge den Verkehr in den privaten Sektor erlaubt, muss unter dem Interface VMBRIDE0 definiert

werden. Auf diese Weise kohnnen sahmtliche Isolationsregeln bequem an einem Ort definiert werden,

was die Sicherheit bezuhglich Sichtbarkeit der Regelsahtze massiv vereinfacht.

Diplomarbeit von Bogdanovic Theodor für die HFU 74

Abbildung 16: Realisierung des Netzwerksegmentes: Notwendige Regeln um switching zu ermöglichen (independent
Interfaces)

FullOpenSourceVirtualization

 8.4.5 Ein kleiner Abgleich zur Realität

 8.4.5.1 Die Firewall/ der gemanagte Switch

Um ein klareres Verstahndnis fuhr die hardwareseitige Konfiguration zu bekommen, soll die

nachfolgende Abbildung einen optischen Einblick gewahhren:

Wie in der Abbildung zu sehen ist, befinden sich die Link Aggregationen auf der rechten Seite und sind

jeweils auf ein NIC aufgeteilt. Auf der linken Seite sind die beiden einzelnen Fujitsu Systeme mit je

einem Port auf dem gleichen NIC angeschlossen. Das gesamte Gebilde stellt den durch pfSense

gemanagten Switch dar. Im Notfall oder bei spahteren Erweiterungen stehen noch 6 Ports zur

Verfuhgung, um daraus noch weitere Link Aggregationen zu bilden oder einzeln anzuschliessen.

Diplomarbeit von Bogdanovic Theodor für die HFU 75

Abbildung 17: Realisierung des Netzwerksegmentes: Optischer Vergleich zwischen Theorie und Praxis (Firewall/
gemanagter Switch)

FullOpenSourceVirtualization

 8.4.5.2 Der konventionelle ungemanagte Switch

Wie in der Abbildung 17 zu erkennen ist, sind alle Komponente, die Teil der Clusterinternen

Kommunikation sind, am ungemanagten Switch angeschlossen. Das Bonding Verfahren, welches hier

gewahhlt wurde, wird im entsprechenden Abschnitt genauer thematisiert. Prinzipiell ist es hier egal, wo

was angeschlossen ist, jedoch wurde versucht, eine gewisse Ordnung zu halten und in

Kategoriegruppen zu gliedern. Die Ausfallsicherheit der Engine und der Firewall – Anbindung wurden

an dieser Stelle als nicht notwendig eingestuft.

Dies war der elementarste Teil der Konfiguration des Netzwerksegmentes. Weitere

Feinkonfigurationen kohnnen in den weiteren Abschnitten folgen. Nach Beendigung dieses

vorbereitenden Teiles kann mit der weiteren Realisierung fortgefahren werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 76

Abbildung 18: Realisierung des Netzwerksegmentes: Optischer Vergleich zwischen Theorie und Praxis
(Switch)

FullOpenSourceVirtualization

 8.5 Beginn mit der Realisation des Storagesegmentes

In diesem Abschnitt sollen alle notwendigen Schritte im Top – Down Verfahren aufgezeigt werden,

welche notwendig sind, um das Storagesegment in einer Einzelbetrachtung aufzusetzen und zu

konfigurieren. Dieser Teil umfasst folgende Konfigurationsschritte:

• Installation der CentOS 7 Minimalinstallationen

• Bilden des RAID5 mit entsprechendem Partitionieren mittels XFS Filesystem

• Installation der notwendigen Komponenten, hier speziell GlusterFS und VDSM

• Bilden der GlusterFS Mountpoints mit minimalen Konfigurationen

 8.5.1 Die verwendete Hardware

Zur Realisierung des zentralen Storages sollen zwei preisguhnstige HP MicroServer Gen8 der ProLiant

Serie verwendet werden. Diese Maschinen eignen sich hervorragend fuhr diesen Zweck. Sie haben mit

einem Single – CPU System und einem Intel Celeron Prozessor mit zwei physischen Kernen gerade

genug Leistung fuhr einen Cluster dieser Grohsse. Sie eignen sich auch besonders gut fuhr Storage –

Lohsungen, da sie vier Festplatten – Slots besitzen, bei denen die Schubladen mit inbegriffen sind. Die

genauen Spezifikation sind:

• CPU → Intel Celeron mit 2,3 GHz

• RAM → 2 GB ECC

• HD → 4 Slot – Plahtze

• Netzwerk → Zwei Onboard 1 Gbit/s Ports

Um mohglichst viel Platz aus den Disks zu holen, wird das Betriebssystem auf eine USB – Disk mit 1 TB

Kapazitaht installiert und in das Gehahuse verbaut bzw. gequetscht. So kohnnen die vier HD – Slots

ausschliesslich fuhr den Storage verwendet werden.

 8.5.2 Kurze Definition bezüglich des gewählten GlusterFS Designs

Zur Umsetzung wurde das Standard Verfahren von Gluster gewahhlt, welches sich Distributed nennt.

Hier wird nach einem im Code von Guster integrierten Algorithmus versucht herauszufinden, welche

Maschine gerade nichts zu tun hat und somit Daten zum Schreiben empfangen kann. Dabei wird immer

ein ganzer, zusammenhahngender Datensatz (also File, Verzeichnis oder in diesem Fall ein Image – File),

an einen der beiden Nodes zum Speichern uhbergeben. Ein Design mit Replicated Funktionen, welche

die Daten redundant sichern, wahre sicherlich schohn gewesen, musste jedoch aus Kosten- und

Platzgruhnden aufgegeben werden. Das gewahhlte Design ist jedoch auch nicht schlecht, denn beim

Ausfall eines ganzen Node kann theoretisch jeder beliebige Rechner mit vier HD – Plahtzen verwendet

werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 77

FullOpenSourceVirtualization

 8.5.3 Installation des CentOS 7

Um einen GlusterFS Node in oVirt integrieren zu kohnnen, ist im Moment noch ein RedHat, bzw. ein

Abkohmmling davon, notwendig. Warum dies so ist, wird im Abschnitt „Realisation des

Virtualisierungssegmentes“ genau thematisiert. An dieser Stelle wird nur die dafuhr notwendige

Software installiert.

Die Installation von CentOS 7 ist aufgrund der Unbernahme des neuen Anaconda – Installers von

Fedoara mehr als einfach. Der Installer ermittelt praktisch alle Systemeinstellungen selbststahndig und

man wird zum Hauptmenuhpunkt gefuhhrt. Hier muss man nun folgende Punkte angeben:

• Partitionierung: Hier kann man ohne weiteres die Standard – Konfiguration nutzen. Seitens

des Autors wird aber empfohlen, die Partition /boot von 500 MB auf 1000 MB zu erhohhen, da

sich hier mit der Zeit die alten Kernel nach dem Updaten ansammeln kohnnen.

• Installationsart: Ideal ist eine reine Minimalinstallation. Wer aber gerne debugging Tools wie

bspw. nslookup nutzen mohchte, sich aber die nachtrahgliche Installation der einzelnen Tools

ersparen will, der sollte hier Standard- bzw. Serverinstallation (Fedora) wahhlen.

• Netzwerkkonfiguration: Diese kann auch nachtrahglich erledigt werden, jedoch ist es an dieser

Stelle von Vorteil, um nach der Installation gleich mit SSH fortzufahren.

◦ Das zu nutzende Adress- und Namensschema, welches fuhr die beiden GlusterFS Nodes

definiert wurde, ist in nachfolgender Tabelle ersichtlich:

Node Name IP- Adresse Subnetzmaske Hostname Domainname

GlusterFS 1 10.10.10.21 255.255.255.0 gfsn1 mgmtdom

GlusterFS 2 10.10.10.22 255.255.255.0 gfsn2 mgmtdom

Tabelle 20: Realisierung des Storagesegmentes: Das Adress- und Namensschema der Gluster Nodes

Fuhr diese Installation wurde die fertige Installations- DVD genutzt. Ein genauer Einblick in die

Installation ist aufgrund der Einfachheit nicht notwendig. An dieser Stelle sei auf die hervorgegangen

Installationsanleitung im Internet verwiesen, wobei folgender Link besonders zu empfehlen ist:

http://www.tecmint.com/centos-7-installation/

 8.5.3.1 Installation der notwendigen Softwarepakete

Fuhr die Nutzung der beiden Nodes als GlusterFS Komponente innerhalb eines oVirt Clusters sind

folgende Softwarepakete notwendig:

• mdadm: um Software RAID's bilden zu kohnnen.

• GlusterFS: glusterfs (Client); glusterfs-fuse; Gluster arbeitet mit dem Filesystem in Userspace

Framework, um auf diese Weise auch Usern das Einbinden zu ermohglichen und um eine

entwicklertechnisch unabhahngige Basis zu schaffen; und der eigentliche glusterfs-server,

welcher notwendig ist, um Gluster uhberhaupt betreiben zu kohnnen.

• VDSM: Diese Software ist fuhr die Integration in oVirt notwendig.

Diplomarbeit von Bogdanovic Theodor für die HFU 78

FullOpenSourceVirtualization

Mit dem nachfolgenden Befehl, kohnnen sahmtliche Pakete bequem installiert werden.

Mdadm und GlusterFS kohnnen ohne weiteres installiert werden, da sie Bestandteil der regulahren

Paketquellen sind. VDSM welches im nahchsten Segment beschrieben wird, ist nicht Bestandteil der

regulahren Quellen. Deswegen muss an dieser Stelle mit yum install centos-release-ovirt35.noarch zuerst

die oVirt Paketquelle installiert werden, danach kann vdsm installiert werden. Da bei einigen

Versuchen festgestellt wurde, dass die Abhahngigkeiten nicht korrekt berechnet werden, muhssen alle

Pakete in einem Zug installiert werden, weswegen der allgemeine Ausdruck vdsm-* (* → Alles was

ahhnlich ist) verwendet wird.

 8.5.3.2 Einrichten des RAID 5

 8.5.3.2.1 Erzeugen des Software RAID

Wie in der Hauptstudie definiert, wird an dieser Stelle ein RAID 5 Verbund eingerichtet. Hierfuhr

werden die Festplatten in ihre Trahgervorrichtungen montiert und in die Server eingefuhhrt.

Mittels eines Partitionierungs- Tools, muhssen zuerst die Festplatten mit einer Partitionstabelle

uhberzogen werden. Hierfuhr wird fdisk verwendet, mit dessen Hilfe jede Festplatte mit der Linux

spezifischen Partitionstabelle Linux RAID (0xFD in der Typen Tabelle) formatiert wird.

Diplomarbeit von Bogdanovic Theodor für die HFU 79

Befehl 8: Realisierung des Storagesegmentes (Befehl): Installation der notwendigen Softwarepakete

yum install mdadm glusterfs glusterfs-fuse glusterfs-server

yum install centos-release-ovirt35.noarch

yum innstall vdsm-*

Alle Befehle mit „y“ → Enter bestä�gen!

Abbildung 19: Realisierung des Storagesegmentes: linke Abb.: Fesplattenmontage, rechte Abb.: Einbau

ACHTUNG!

Aufgrund des Sor eralgorithmus von uDev, ist die USB – Disk nicht an erster Stelle. Sie #ndet

sich meist efer in der Hierarchie. In Diesem Fall liegt sie unter /dev/sdd

FullOpenSourceVirtualization

Nach dem Partitionieren und Markieren als RAID – Disk, kann mit dem Erstellen des Software – RAID

begonnen werden.

Das Werkzeug fuhr diesen Zweck ist mdadm, mit dessen Hilfe der Software – RAID initialisiert wird.

Der fuhr diese Arbeit verwendete Befehlsaufruf lautet wie folgt:

Doch was bedeuten all diese Werte in dieser langen Befehlskette? Nachfolgend eine genaue

Erlahuterung:

• mdadm, create und verbose dienen dem Aufruf, der Instruktion und einer Ausgabe fuhr

Debugging – Zwecke.

• Metadata; Linux Software – RAID speichert alle relevanten Daten zu ein RAID Array an

gewissen Positionen im Speicherblock, dem sogenannten Superblock. Die Version, in diesem

Fall 1.2, besagt laut Normierung, dass die Metadaten und damit der Superblock 4 KiB nach

Beginn des Devices liegen muss.

• /dev/md0; ist der Hardware bezogene Name des RAID Device. Dieser kann frei zwischen den

Nummern 0 – 127 gewahhlt werden.

• Level=5; ist der RAID Level, welcher erzeugt werden soll.

• Chunk=32; ist die Chunk Size, welche genutzt werden soll, um die Blockgrohsse einer

Speichereinheit zu definieren.

• Raid-devices; sagt mdadm, wie viele Disks effektiv genutzt werden sollen. Dieser Wert wird

vordefiniert, um allfahllige Fehleingaben beim nahchsten Schritt zu kompensieren.

• /dev/sda1-c1+e1; sind die Disks bzw. die Partitionen, welche dem RAID Verbund beim

kreieren zur Verfuhgung stehen.

Dies war es mit dem ersten Teil der RAID – Bildung. Dieser Prozess des RAID 5 Kreierens dauert bei

Diplomarbeit von Bogdanovic Theodor für die HFU 80

TIPP

Wer sich mit den Command line Tools fdisk und cfdisk nicht auskennt, kann Live – Systeme

wie „system rescue cd“ verwenden. Diese bringen das gra#sche Tool gparted mit. So lassen

sich Par onierungen leicht unter einem GUI vornehmen.

Befehl 9: Realisierung des Storagesegmentes (Befehl): Erstellen des Software - RAID 5

mdadm --create --metadata 1.2 --verbose /dev/md0 --chunk=32 --level=5 --raid-devices=4 /dev/sda1

/dev/sdb1 /dev/sdc1 /dev/sde1

ALTERNATIVE

Manche behaupten heute, dass es eEzienter sei, die Disks direkt dem So8ware – RAID zu übergeben

und nicht erst eine Par onstabelle zu generieren. Dies ist mit mdadm heute möglich, ob es auch

eEzienter ist, muss jeder selbst ermi<eln und entscheiden. Der Autor folgt hier der alten Tradi on.

FullOpenSourceVirtualization

einer Konfiguration wie dieser ca. 16 – 19 Stunden, je nach Chunk Size. In diesem Fall hat er 19

Stunden gedauert. Es lohnt sich, einen solchen Prozess am Abend zu initialisieren, da ab hier nicht viel

getan werden kann.

Fruhher war es noch notwendig, das konfigurierte Array noch in das File /dev/mdadm.conf

einzutragen. Hier half einem der mdadm Befehl mit den Optionsargumenten –detail –scan, welche

das / die Arrays ermittelten. Diese Ausgabe konnte mittels „>“ in die Datei mdadm.conf umgeleitet

werden. Mit den heute modernen Initialsystemen wie bspw. Systemd ist dies nicht mehr notwendig.

Sie erkennen, falls mdadm installiert ist beim Systemstart, ob es RAID – Verbuhnde hat und speichern

sie dauerhaft mit einer UUID in das Verzeichnis /dev/md/<Nummer>. Man kann mdadm.conf noch

nutzen, da die dort eingetragenen Angaben immer noch eine Gewichtung haben.

 8.5.3.2.2 Erzeugen des Filesystems

Nach Beendigung des hardwarebezogenen Teiles kann das Filesystem erzeugt werden. Hier wurde XFS

gewahhlt. Es bietet einige interessante Features wie bspw. das Erzeugen von Snapshots auf der

Partitionensebene. Der elementarste Vorteil von XFS ist die Mohglichkeit, Optimierungen beim

Einrichten von Partiotionen auf RAID – Verbuhnden vorzunehmen. So kann XFS klar mitgeteilt werden

wie gross die Chunk Size des Filesystems sein soll und auf wie vielen Disks sich das Filesystem in der

Realitaht befindet. So kann die Partition optimal auf die Chunk Size des RAID 5 synchronisiert werden.

Hierzu gibt es eine Vielzahl an Erklahrungen im Internet, welche aber in hohe mathematische Sphahren

aufsteigen. Eine verstahndliche und schnell anwendbare Erklahrung findet sich unter folgendem Link:

 http://linuxsnippets.net/en/snippet/xfs-how-calculate-correct-sunitswidth-values-optimal-

performance

In dieser Erklahrung sieht man, dass lediglich zwei Optionen bei XFS notwendig sind, um die

entsprechenden Anpassungen fuhr diesen RAID Verbund vorzunehmen.

• su: Entspricht der Stripe Size bzw. der Chunk Size

• sw: Stripe Width, was bei dieser vereinfachten Anwendungsweise der Anzahl an aktiv

genutzten Data Disks entspricht.

Zwar richtet sich das Beispiel an RAID 6 – Verbuhnde, kann jedoch leicht an diesen Fall angepasst

werden. In diesem Fall einspricht der su – Wert = 32KiB und der sw – Wert = 4 Disks. Hier kohnnen vier

Disks angegeben werden , da die Paritahtsdaten auf alle vier Disks aufgeteilt werden und somit auch

vier Data Disks zu Verfuhgung stehen. Nachfolgend der notwendige Befehl zum Erstellen der Partition.

Nun muhssen noch je zwei Einbindepunkte fuhr beide Nodes definiert werden. Hierzu wird auf beiden

Diplomarbeit von Bogdanovic Theodor für die HFU 81

Abbildung 20: Realisierung des Storagesegmentes: Auszug aus /proc/mdstat von Gluster Node 1

Befehl 10: Realisierung des Storagesegmentes (Befehl): Erstellen des XFS Filesystems

mkfs.xfs -d su=32k,sw=4 /dev/md0

FullOpenSourceVirtualization

Nodes ein Verzeichnis namens /storage angelegt. Hier wird die XFS Partition, welche uhber den RAID –

Verbund gezogen wurde, gemountet. Um diese Aktion auch rebootfest zu machen, wird ein

permanenter Eintrag in /etc/fstab notwendig. Hier wahhlt der Autor normalerweise den UUID der

Partition als Identifikationspunkt, jedoch zeigt CentOS 7 in dieser Hinsicht kleine Schwierigkeiten, was

als Backup – Lohsung die klassische Schreibweise zur Folge hatte. Nachfolgend ein Beispiel anhand des

Node 1:

Wie in Abbildung 20 zu sehen ist, wurde das RAID – Device permanent in /storage gemountet. Wie

bereits erwahhnt ist nicht bekannt, warum der UUID bei diesem Eintrag nicht funktionierte. Dieser

Prozess wird auf Node 2 identisch wiederholt.

 8.5.3.2.3 Bilden der GlusterFS Volumes

Der nahchste Schritt ist die Erstellung der beiden Basisordner in /storage. Hierzu wird Brick1/2 auf

beiden Nodes fuhr den Main – Storage von GlusterFS auf Node1/2 erstellt sowie ISO_Store1/2 fuhr die

spahteren NFS Freigaben, in welchen sich die ISO's befinden werden. Siehe hierzu folgendes Beispiel

von Node1:

Dies geschieht auf beiden Nodes mit den jeweiligen Node – Nummern als Verzeichnisnummer. Dieser

Prozess wird mit Root – Rechten vollzogen, die Anpassung der Rechte erfolgt spahter auf bequeme Art

und Weise mit einer in Gluster eigens dafuhr entwickelten Funktion.

Kommen wir nun zum Erstellungsprozess des Gluster – Volumes, das spahter den Main – Storage

bereitstellen wird. Hierfuhr geht man per SSH zum Node1 (gfsn1.mgmtdom) und gibt folgendes ein:

Diplomarbeit von Bogdanovic Theodor für die HFU 82

Abbildung 21: Realisierung des Storagesegmentes: Auszug aus /etc/fstab von Node 1 (gfsn1.mgmtdom)

Befehl 11: Realisierung des Storagesegmentes (Befehl): Anlegen der beiden Gluster Ordner

mkdir /storage/brick1

mkdir /storage/ISO_STORE1

Befehl 12: Realisierung des Storagesegmentes (Befehl): Kontaktaufnahme mit Node2 (GlusterFS)

gluster peer probe gfsn2.mgmtdom

FullOpenSourceVirtualization

Dieser Befehl pusht Node1 zur Verbindungsaufnahme mit Node2. Dieser Schritt wird auf Node2 mit

dem entsprechend angepassten Befehl (gfsn1.mgmtdom) wiederholt. Dies bindet beide Nodes in eine

Kommunikationsverbindung, so dass sie sich untereinander wahrnehmen. Momentan geschieht aber

nichts, dies ahndert sich aber mit nachfolgendem Befehl:

Dieser Befehl weist Gluster an, ein Volume namens oVirtStorage1 zu createn, welches als

Transportprotokoll tcp nutzt. Dabei werden nun die Nodes angegeben, gefolgt vom realen Pfad der

beiden Verzeichnisse auf dem Filesystem (/storage/brick1/2). Dies funktioniert nur, wenn die Nodes

mit entsprechendem Befehl in Befehl 12 in eine logische Verbindung gebracht wurden. Das war es

schon! Der Befehl in Befehl 13 kann von irgend einem beliebigen Host im logischen Verbund abgesetzt

werden, dies spielt bei Gluster absolut keine Rolle. Hier gibt es eine Menge an Zusatzoptionen, um

diverse Replika – Verbuhnde zu kreieren. Gibt man jedoch keinen dieser Parameter an, so wird ein

Standard Distributed Verbund erzeugt, in diesem kontaktiert der Client einen der Nodes und handelt

mit ihm aus, wer sein direkter Ansprechpartner beim Speichern des jeweils aktuellen Datensatzes ist.

Hier wahre ein Striping Verfahren die effizienteste Methode bei der Virtualisierung. Derzeit ist dies

jedoch aus technischen Gruhnden nicht mohglich, da die Locking Files vorerst direkt vom Client ins VM –

Storage – Verzeichnis geschrieben werden. Das geht aber nicht, wenn das Verzeichnis auf mehrere

reale Platten verteilt ist.

Anschliessend erzeugen wir den NFS – Mountpoint fuhr den ISO Storage. Hierfuhr nutzen wir folgenden

Befehl:

Dieser Befehl ist absolut identisch mit dem vorhergehenden, mit der Ausnahme, dass hier der Name

ISO_STORE1 verwendet wird. Technisch gesehen ist hier genau das selbe geschehen wie beim Anlegen

von oVirtStorage1. Es wurde auch der gesamte Diskspace verwendet, so dass bei beiden der gleiche

Maximalwert erscheint. Quotas an dieser Stelle zu setzen wuhrde keinen Sinn ergeben, da die Menge

der ISO's nie einen so grossen Diskspace fuhllen kohnnte.

Nun gehohren die Volumes nach dem Erstellen aber dem Superuser Root, was nicht gerade vorteilhaft

fuhr die spahtere Nutzung durch die Virtualisierungsnodes ist. Um an dieser Stelle etwas vorzugreifen,

sollen die Volumes nun der oVirt spezifischen Gruppe uhbergeben werden. Diese Gruppe ist im

Standard CentOS (RedHat, Fedora) mit der Gruppen – ID 36 (KVM, Mitglieder qemu und sanlock)

definiert. Nun kohnnte man muhhsam die Rechte mit dem altbewahhrten Werkzeug chown setzen, oder

man benutzt die in Gluster integrierten Werkzeuge dafuhr.

Diplomarbeit von Bogdanovic Theodor für die HFU 83

Befehl 13: Realisierung des Storagesegmentes (Befehl): Erstellung des GlusterFS Volumes oVirtStorage1

gluster volume create oVirtStorage1 transport tcp gfsn1.mgmtdom:/storage/brick1 \

gfsn2.mgmtdom:/storage/brick2

Befehl 14: Realisierung des Storagesegmentes (Befehl): Erstellung des GlusterFS Volumes ISO_STORE1

gluster volume create ISO_STORE gfsn1.mgmtdom:/storage/ISO_STORE1 \

gfsn2.mgmtdom:/storage/ISO_STORE2

FullOpenSourceVirtualization

Diese beiden Befehle setzen die Besitzer der Volumes und passen auch gleich die Schreibrechte an.

Diese Methode ist allgemein zu bevorzugen, da so mit Sicherheit alles automatisch richtig gesetzt wird.

Nachfolgend kann mit gluster volume info das fertige Ergebnis betrachtet werden.

Die meisten hier ersichtlichen Optionen sind Defaultwerte. Einige wurden jedoch noch nachtrahglich

hinzugefuhgt, da sie notwendig waren. Die meisten jedoch sind nicht notwendig und wurden bei der

Splitt – Brain Problematik zu Debugging – Zwecken eingefuhhrt und so stehen gelassen.

Dazu folgende Erklahrungen:

cluster.quorum-type: auto → (Wurde eingefuhhrt); Er definiert wie sich der Cluster verhalten soll,

wenn die entsprechende Menge an mohglichen Ausfahllen eintritt. Hier automatisch die Arbeit einstellen.

Cluster.server-quorum-ratio: 51% → (Wurde eingefuhhrt); Definiert die maximale Anzahl

(prozentual) an mohglichen Ausfahllen. Der Wert ist sicherlich fragwuhrdig bei nur zwei Nodes, jedoch

empfiehlt RedHat diesen Wert und es lahsst sich ohnehin kein anderer definieren.

Network-ping-timeout: 10 → (Wurde eingefuhhrt); Dies zu Debugging – Zwecken bei der Splitt – brain

Problematik. Er definiert den Timeout, wie lange ein Gluster – Server auf eine mohglicherweise

unterbrochene Verbindung mit einem Client warten soll, bis er seine Verbindung als tot klassifisiert.

Dies war es eigentlich mit der Konfiguration der GlusterFS Volumes. Ein weiterfuhhrender Teil wird in

einem spahteren Abschnitt folgen, wo noch einige kleine Tricks beim Einbinden gezeigt werden. Jedoch

muss seitens des Autors an dieser Stelle betont werden, dass das Erstellen von Mountpoints uhber

verteilte Dateisysteme noch nie so einfach von der Hand ging wie mit diesem Top Produkt, welches

Diplomarbeit von Bogdanovic Theodor für die HFU 84

Befehl 15: Realisierung des Storagesegmentes (Befehl): Setzen der richtigen Rechte (GlusterFS)

gluster set oVirtStorage1 storage.owner-uid=36

gluster set ISO_STORE1 storage.owner-uid=36

Abbildung 22: Realisierung des Storagesegmentes (Befehl): Betrachtung der fertigen Gluster Volumes

FullOpenSourceVirtualization

RedHat als simple Antwort auf CephFS einst einfuhhrte. Es ist bei Gluster vollkommen egal, von

welchem Standort aus man die Volumes bildet oder zu welchem Node man sich Zwecks Sharing

connected.

Diplomarbeit von Bogdanovic Theodor für die HFU 85

ALTERNATIVE

Hier wurden zwei externe Storages für die Bildung des Mountpoint verwendet. Es ist aber

auch möglich die einzelnen Storages in den Virtualisierungsnodes zu betreiben. So spart man

Rechner und Peripheriekomponenten wie Kabel.

ALTERNATIVE

Hier wurde als Transportprotokoll TCP verwendet. UDP ist eine massiv schnellere Alterna ve,

wobei man einen möglichen Datenverlust seitens unvollständiger Schreibprozesse beachten

muss.

FullOpenSourceVirtualization

 8.6 Beginn mit der Realisation des Virtualisierungssegmentes

In diesem Abschnitt soll ausschliesslich die Installation und Konfiguration der oVirt spezifischen

Komponenten thematisiert werden. Dies beinhaltet die Installation der oVirt Komponenten mit ein

wenig Konfigurationsaufwand. Die Konfigurationen wie Netzwerkinterfaces oder Storage

Angelegenheiten werden im anschliessenden Kapitel thematisiert. Dieser Teil gliedert sich in zwei

Abschnitte, die Installation des fertigen Node – Images auf den virtualisierungs- Maschinen und die

Installation des oVirt Management Centers auf dem Supermicro Server.

 8.6.1 Die Komponenten

In diesem Abschnitt sind nachfolgende Komponenten involviert:

 8.6.1.1 Die eigentlichen Virtualisierungsnodes

 8.6.1.1.1 Dell PowerEdge R810

Dieser Host ist der leistungsstahrkste und wird Mitglied des leistungsstahrkeren Cluster. Seine

Spezifikationen sehen dabei wie folgt aus:

Komponente Wert

CPU 2x Intel Xeon E7-4870 @ 2.40 GHz, 10 Reale Cores @ 2 Threads = 40 Cores

RAM 257691 MB

Swap 5999 MB

NIC 8x Intel 1Gbit/s, davon 2x Interne Kommunikation, 3x VM Network

Tabelle 21: Realisierung des Virtualisierungssegmentes: Spezifikationen von Dell PowerEdge

Wie bei allen Hosts, dienen auch hier die lokalen Disks nur dem Aufnehmen der oVirt Installation. Dies

hat den Vorteil, dass spahtere Festplattenwechsel nicht die Integritaht der VM Images gefahhrden. Um an

dieser Stelle vorzugreifen, sei hier noch erwahhnt, dass es keine passenden Festplattentreiber fuhr die

Dell Disks gibt. Hier musste ein lokaler RAID 0 auf Hardwareebene erzeugt werden, um eine

Installationsmohglichkeit fuhr das oVirt – Image uhberhaupt zu schaffen.

Diplomarbeit von Bogdanovic Theodor für die HFU 86

Abbildung 23: Realisierung des Virtualisierungssegmentes: Dell PowerEdge Frontansicht

FullOpenSourceVirtualization

 8.6.1.1.2 Supermicro (Superworkstation) Eigenbau aus Barebone

Der Supermicro hat zwar knapp einen Viertel der Leistung des Dell, gehohrt aber ebenfalls zu den

leistungsstahrkeren Maschinen und wird sich den Platz mit dem PowerEdge im selben Cluster teilen.

Seine Spezifikationen sehen wie folgt aus:

Komponente Wert

CPU 2x Intel Xeon E5-2620 0 @ 2.00 GHz, 6 Reale Cores @ 2 Threads = 12 Cores

RAM 64147 MB

Swap 40267 MB

NIC 8x Intel 1Gbit/s, davon 2x Interne Kommunikation, 3x VM Network

Tabelle 22: Realisierung des Virtualisierungssegmentes: Spezifikationen von Supermicro Barebone

In dieser Maschine ist 250 GB Festplatte verbaut, welche dem oVirt – Node als Installationziel dient.

Trotz seines Aussehens aufgrund der spahter dazugekauften Rack – Montageschinen ist dies eine

Workstation. Das Fehlen eines LOM – Interfaces bei diesem Node fuhhrte zur Einfuhhrung des Semi-

Automatic-HA.

 8.6.1.1.3 Die baugleichen Fujitsu Primergy RX100 S7p

Diese beiden Maschinen sind eher niedrigerer Leistungsklasse und werden spahter in einem eigens

dafuhr gebildeten Cluster arbeiten. Ihre primahre Funktion wird voraussichtlich die Bereitstellung von

Infrastrukturdiensten sein. So kohnnen die internen Dienste wie bspw. DHCP, DNS und ahhnliche auch

auf Hardwareebene sauber getrennt werden. Die Spezifikation eines Node sieht dabei wie folgt aus:

Komponente Wert

CPU 1x Intel Xeon E3-1230 V2 @ 3.30 GHz, 4 Reale Cores @ 2 Threads = 8 Cores

RAM 7696 MB

Swap 7943 MB

NIC 4x Intel 1Gbit/s, davon 2x Interne Kommunikation, 1x VM Network

Tabelle 23: Realisierung des Virtualisierungssegmentes: Spezifikationen eines Fujitsu Primergy Servers

Diplomarbeit von Bogdanovic Theodor für die HFU 87

Abbildung 24: Realisierung des Virtualisierungssegmentes: Supermicro Barebone Frontansicht

FullOpenSourceVirtualization

 8.6.1.1.4 Das Management Center, Supermicro Barebone 1HE

Dieser Rechner diente in der Vergangenheit schon vielen Zwecken, vom SmartOS Node bis zum

netzweiten DHCP – DNS Server. Eine kurze Zeitspanne war er ausser Betrieb, bis er mit Beginn dieser

Arbeit wieder ins Leben gerufen wurde. Seine Spezifikationen sind genau richtig fuhr den Betrieb als

Standalone Maschine und reichen vollkommen fuhr das Aufrechterhalten eines Java Applicationservers.

Seine Spezifikationen sind:

Komponente Wert

CPU 1x Intel Atom D510 @ 1.66 GHz, 2 Reale Cores @ 2 Threads = 4 Cores

RAM 1830 MB

Swap 2048 MB

NIC 2x Intel 1Gbit/s, davon 1x Interne Kommunikation

Tabelle 24: Realisierung des Virtualisierungssegmentes: Spezifikationen von Supermicro Barebone 1HE

Dies sind die fuhnf Hauptdarsteller diese Abschnittes. Bis auf den Supermicro Barebone 1HE waren alle

einst Mitglieder eines Xenserver 6.2 Clusters, was die Verkablung und Montage der einzelnen

Komponenten massiv vereinfachte.

Diplomarbeit von Bogdanovic Theodor für die HFU 88

Abbildung 25: Realisierung des Virtualisierungssegmentes: 2x Fujitsu Primergy Frontansicht

Abbildung 26: Realisierung des Virtualisierungssegmentes: Supermicro Barebone 1HE Frontansicht

FullOpenSourceVirtualization

 8.6.2 Installation der oVirt Nodes

Die Installation der oVirt Nodes ist eine simple Angelegenheit. Das fertige Installations- ISO lahsst sich

auf der oVirt Website fuhr ahltere aber auch fuhr neuere Preview Versionen herunterladen und auf einen

Datentrahger brennen. Die hier verwendete Version ist 3.5 – 0.999.20150428093 und entsprach bei

Beginn dieses Projektes der aktuellsten. Wie bereits mehrfach erwahhnt, ist dies die einfachste aber

auch zugleich sicherste Variante der Installation. Denn diese Installation ist seitens oVirt Projekt

speziell optimiert und abgehahrtet worden. So fehlen einige elementare Tools des Userlands wie bspw

adduser, welches zum Anlegen neuer User notwendig ist. Diese Massnahme soll eine komplett in sich

gekapselte Installation darstellen, welche sich nur von der oVirt Engine steuern lahsst. Installationen

von Zusatzsoftware wie etwa ein Zabbix Agent sind erst gar nicht mohglich, da man keine Mohglichkeit

hat Repositories einzubinden. Wer gerne ein System mit vollem Zugriff mohchte, dem sei an dieser

Stelle wahrmstens die regulahre Verwendung einer CentOS Version empfohlen.

Bootet man die Rechner mit eingelegter CD, landet man direkt beim Installer. Dieser stellt wenige

elementare Fragen wie:

• Wohin soll installiert werden?

• Die Partitionierung der Basisinstallation ist vorgegeben. Man muss nur noch bestahtigen oder
ggf. noch die Grohssen anpassen. An dieser Stelle ist auch die Partitionierung mohglicher weiterer
Disks fuhr die Verwendung als Local Storage mohglich. Jedoch ist eine solche Standalone
Konfiguration bei einem Produkt wie oVirt sinnlos.

• Die Swap – Partition kann auch definiert werden. Hier scheint der Installer grosszuhgig mit den
Ressourcen umzugehen, da er mehr als das gewohhnliche Drittel des Arbeitsspeichers wahhlt. Bei
grossen Arbeitsspeichern kann es vorkommen, dass er zu viel Diskspace wahhlt und nicht
genuhgend fuhr die Installations- Partition uhbrig bleibt (so beim Dell geschehen).

• Die Netzwerkkonfiguration kann bei diesem Schritt noch mit einem NIC vollzogen werden. Die
Betitlung der Interface Namen ist etwas kompliziert, da hier das Full Path – Verfahren
angewendet wird. So ergeben sich Namen wie enp2s0f1, welche sich nur schwer einem
bestimmten Port zuweisen lassen. Geht man aber auf das Interface, so besteht die Mohglichkeit,
den Port fuhr ca. fuhnf Sekunden aufblinken zu lassen. Man muss sich hier nicht bemuhhen,
schnellstmohglich nach dem Port zu suchen. Schliesst man lediglich ein Netzwerkkabel an, so
kann man alle Ports nacheinander durchblinken lassen. Der angeschlossene wird in der
Statusleiste beim Aktivieren der Bilk – Funktion automatisch in den active Modus wechseln.
Anschliessend kann man die Basisparameter wie Default Gateway, DHCP, DNS und natuhrlich die
IP – Konfiguration vornehmen.

• Im Anschluss muss man nur noch das Passwort fuhr den einzig einsetzbaren User admin
eingeben.

Die Installation ist intuitiv und man wird auf Fehler hingewiesen. Bei Systemen ohne hardwareseitige

Virtualisierungs- Unterstuhtzung, oder in virtuellen Umgebungen, wird man mehrfach darauf

hingewiesen, dass diese fehle. Eine Installation ohne hardwareseitige Virtualisierungs- Unterstuhtzung

ist technisch gesehen mohglich, macht aber keinen Sinn. Das installierte System wird dann auch beim

ersten Booten hahngen bleiben und in einen Emergency Mode fallen. Dies war es eigentlich auch schon

mit der Installation der oVirt vordefinierten Images, sie ist wie gesagt simpel und in wenigen Minuten

erledigt.

Diplomarbeit von Bogdanovic Theodor für die HFU 89

FullOpenSourceVirtualization

Nachfolgend die Definitionen der Namensrahume und deren statischen IP's:

Node Name IP- Adresse Subnetzmaske Hostname Domainname

oVirt Node 1 10.10.10.41 255.255.255.0 ovn1 mgmtdom

oVirt Node 2 10.10.10.42 255.255.255.0 ovn2 mgmtdom

oVirt Node 3 10.10.10.43 255.255.255.0 ovn3 mgmtdom

oVirt Node 4 10.10.10.44 255.255.255.0 ovn4 mgmtdom

Tabelle 25: Realisierung des Virtualisierungssegmentes: Das Adress- und Namensschema der oVirt
Virtualisierungsnodes.

 8.6.3 Installation der oVirt Engine (Management Center)

Die Installation der Engine ist technisch gesehen einfach. Jedoch uhberschnitt sich die Realisierung des

offiziellen Teiles dieser Arbeit mit der Ruhckportierung des kuhrzlich in Produktivbetrieb gegangenen

oVirt 3.6. Dabei wurden einige Neuerungen von oVirt 3.6, speziell die Installationsverfahren und die

damit abhahngigen Repositories, nach 3.5 portiert. Dies fuhhrte dazu, dass die bei den Vortests

ermittelten Installationswege nicht mehr ganz gleich waren. Zusahtzlich kam der open source Faktor

hinzu, welcher zwar immer aktuelle Topprodukte garantiert, aber diese nur spahrlich dokumentiert.

Hier ging einiges an Zeit und Nerven verloren, da die Fehler- bzw. die Logfileanalyse einiges an Zeit

kostete.

Dieser Abschnitt soll sich mit der Installation einer oVirt Engine 3.5 beschahftigen und dabei die

Einrichtung auf einer Standalone Maschine thematisieren. Hier wird speziell auf die Eigenheiten der

heute bereits als veraltet geltenden Installation der Version 3.5 eingegangen, fuhr welche es heute

kaum korrekte Anleitungen mehr im Internet gibt.

 8.6.3.1 Installation des Grundsystems (CentOS 7)

Als Betriebssystem wird und muss an dieser Stelle CentOS oder ein anderer RedHat Abkohmmling

genutzt werden. Auf die Installation der Minimalinstallation soll hier nicht weiter eingegangen

sondern auf die ahquivalente Anleitung unter Punkt 8.5.3 „Installation des CentOS 7“ hingewiesen

werden.

Hier wird folgendes Namensraumschema verwendet:

Node Name IP- Adresse Subnetzmaske Hostname Domainname

Ovirt Engine 10.10.10.5 255.255.255.0 Ovirt-mgmt mgmtdom

Tabelle 26: Realisierung des Virtualisierungssegmentes: Das Adress- und Namensschema der oVirt Engine

 8.6.3.2 Installation der notwendigen Software

 8.6.3.2.1 Installation und Konfiguration von VDSM

Nach erfolgreicher Installation muhssen nun die notwendigen Pakete installiert werden. Hier wies das

Diplomarbeit von Bogdanovic Theodor für die HFU 90

FullOpenSourceVirtualization

Internet einst auf den simplen Installations- Befehl yum install ovirt-engine-setup hin. Dies ist aber

seit ca. November 2015 nicht mehr mohglich und yum antwortet stets mit der Antwort; Fehler: Nichts

zu tun. Die Lohsung schien zunahchst einfach, die oVirt Pakete sind nicht mehr Bestandteil der Standard

Repositories und muhssen von Hand eingebunden werden. Eine kurze → Google – Anfrage ergab, dass

man die Paketquelle einfach mit dem Befehl yum install centos-release-ovirt35.noarch einrichten

lassen kann. Nach diesem Schritt ist das CentOS eigene Repository eingebunden und man kann einige

Tools, welche fuhr den Betrieb eines CentOS Systems als Hypervisor notwendig sind, nachinstallieren.

Jedoch noch immer nicht das zwingend benohtigte ovirt-engine-setup.

An dieser Stelle verlassen wir die ovirt-engine-setup Problematik und widmen uns der Installation

der Komponenten die wenigstens nach dem Hinzufuhgen des oVirt eigenen Repositories mohglich sind.

Dieser Punkt wurde im Abschnitt der Storage Node Installation angesprochen und soll hier fuhr die

oVirt Engine und die beiden Storage Nodes prahziser thematisiert werden.

Der VDSM Daemon (Virtual Desktop Server Manager) ist ein Hintergrunddienst, welcher von oVirt

entwickelt wird. Er stellt eine Abstraktionsschicht dar, welche einerseits mit der oVirt Engine und

anderseits mit den Nodes bzw. dem darunterliegenden libvirt kommuniziert. Libvirt selbst stellt eine

mahchtige API zur Verfuhgung, mit welcher es mohglich ist, KVM uhber die Kommandozeile (virsh) und

uhber grafische Tools wie dem virt-manager zu managen. Jedoch wahren die Befehlsaufrufe zur

Steuerung der VM's unendlich lang und die Einbindung in ein Framework wie oVirt massiv

komplizierter. Aus diesem Grund soll der VDSM Dienst als Vermittler zwischen der Engine und libvirt

dienen. Zusahtzlich kann VDSM auch Funktionen uhbernehmen, die libvrit selbst nicht beherrscht, wie

etwa die HA Bereitstellung, das Monitoring der Hosts selbst oder das gesamte Storage – Management

uhber GlusterFS. Nachfolgend eine grafische Abbildung von oVirt selbst uhber das Gesamtkonzept der

Virtualisierungs- Technik:

Die Installation von VDSM auf den beiden Storages und der Engine ist nicht genau beschrieben und

fuhhrt beim simplen Aufruf von yum install vdsm zu einer nicht kompletten Installation. Der Grund ist,

dass die Installation dynamisch ist und bei Bedarf auf ein Minimum reduziert wird. Man kann also

Diplomarbeit von Bogdanovic Theodor für die HFU 91

Abbildung 27: Realisierung des Virtualisierungssegmentes: Gesamtschema
einer oVirt Umgebung @ http://www.ovirt.org/Architecture

FullOpenSourceVirtualization

bspw. die Basis installieren und zusahtzliche Komponenten wie etwa vdsm – Gluster als Option wahhlen.

Da das Herauspicken der einzelnen Komponenten eine muhhsame Arbeit darstellt, kann hier uhber eine

simple Abkuhrzung einfach alles installiert werden. Diese Methode umfasst ca. 240 MB an benohtigtem

Diskspace und ist in dieser Form hinnehmbar. Der exakte Installationsaufruf hier lautet:

Dies genuhgt, um eine komplette VDSM – Installation zu bekommen. Nach der Installation muss der

VDSM Daemon noch eingerichtet werden. Dies geschieht mit nachfolgendem Befehl:

Dieser Befehl gehohrt zu den wenigen, welche noch sauber in den oVirt Dokumentationen erklahrt sind.

Seine Funktion ist die vollkommen automatische Einrichtung der fuhr oVirt notwendigen Dienste wie

sanlock Daemon oder die Firewall Konfiguration. Die wohl wichtigste Aufgabe dieses Befehls ist das

Erstellen und Einrichten der ovirtmgmt Netzwerkschnittstelle, welche als Bridge auf den Nodes die

Kommunikation der Hypervisor mit der Engine ermohglicht. Ohne diese Schnittstelle verweigert die

Engine bei einem spahteren Aufnahmegesuch seitens des Nodes die Integration ins Datacenter. Weshalb

das Argument force notwendig ist, wird in der oVirt Dokumentation nicht erwahhnt, es funktioniert

aber nicht ohne.

Dies war eigentlich die gesamte notwendige Konfiguration von VDSM. Die bis hierhin erklahrten

Schritte kohnnen ggf. auf jeder CentOS Minimalinstallation ausgefuhhrt werden, um jeden beliebigen

Host als Hypervisor zu konfigurieren. Dies ist der Alternativweg fuhr alle, die nicht das fertige oVirt –

Node Image verwenden mohchten. Hier muss auch klar gesagt werden, dass die automatische

Konfigurations- Routine des oben genannten Befehls jede CentOS Maschine so umkonfiguriert, als ob

es ein fertiges Node – Image wahre. Man muss hier aber vorsichtig sein, da das Repository von CentOS

stammt und somit die Frage nach dem Updaten der Komponenten und somit die Kompatibilitaht zum

original Projekt nicht definitiv sicher ist.

Die oVirt Engine selbst braucht im Grunde keinen VDSM Daemon um die Nodes zu managen, diese

Aufgabe kann der Java Applicationserver auch selbststahndig uhbernehmen. Hier war der Grundgedanke

des Autors, die Engine selbst in den Cluster als Node einzubinden und seinen lokalen Storage als NFS

Share fuhr ISO – Images einzubinden. Da VDSM aber vor Beginn der Konfiguration pruhft, ob eine

hardwareseitige Virtualisierungs- Unterstuhtzung vorhanden ist, bricht er bei Nichtvorhandensein ab.

Ohne ist aber die Einbindung des Storages (Fehlen der Netzwerkschnittstelle ovirtmgmt) aber nicht

mohglich. Aus diesem Grund wurde die VDSM Installation wieder vom Host entfernt.

Diplomarbeit von Bogdanovic Theodor für die HFU 92

Befehl 16: Realisierung des Virtualisierungssegmentes (Befehl): Installation von VDSM

yum install vdsm-*

Befehl 17: Realisierung des Virtualisierungssegmentes (Befehl): Einrichten vom VDSM Daemon auf den beiden
Storage Nodes und der oVirt Engine

vdsm-tool --con�gure force

FullOpenSourceVirtualization

 8.6.3.2.2 Installation des Management – Centers

Nach dieser kleinen nervlichen Ablenkung kohnnen wir uns wieder dem Installationsproblem mit der

eigentlichen Engine Installation widmen. Hier war nach einer Suche auf der der Download – Seite des

oVirt Projektes schnell klar, dass mohglicherweise eine manuelle Einbindung auf dem hier verfuhgbaren

Repository notwendig sein kohnnte. So wurde in /etc/yum.repos.d/ ein bestehendes File als Pattern

kopiert und entsprechend angepasst. Hierbei wurde das Zielverzeichnis auf dem Download Server

unter mirrorlist eingetragen. Die Verwendung des Keyrings (gpgcheck), um eine Repository

Verifizierung zu ermohglichen, scheiterte, woraufhin entschieden wurde, der Quelle ausnahmslos zu

vertrauen und auf die Verwendung der Sicherheitspruhfung zu verzichten. Das neu angelegte

Repository – File trahgt den Namen CentOS-Engine-Setup_oVirt35.repo und hat folgende

Einstellungen:

Nach der Erstellung dieses Files kann mittels yum update die Quelle initialisiert werden. Nun kann

wieder versucht werden, ovirt-engine-setup zu installieren, da es ja nun bei einer Suche mit yum

search ovirt-engine-setup als aktives Paket gefunden wurde. Jedoch scheitert auch dieser Versuch

mit der Fehlermeldung, dass zwei PHP Module und das Tool novnc in keiner Paketquelle gefunden

wurden. Hierauf wurde versucht nach den vermissten Paketen im Internet zu suchen, wobei novnc

einen Treffer ergab. Es ist Bestandteil der nicht Standard Pakete von Fedora und gehohrt auch nicht zu

den Standard Werkzeugen der RedHat Infrastruktur Philosophie. Somit war auch dem Autor nach

langer vorgahngiger Suche im Internet klar: Es muss sich in dem Repository epel verstecken. Hierbei

handelt es sich um die Fedora Extra Packages for Enterprise Linux, welches die Fedora Community fuhr

Neuentwicklungen im eigenen Serverumfeld nutzt, die aber aus Sicht von RedHat nicht notwendig sind

fuhr ihr Produkt Portfolio. Gluhcklicherweise kann diese Quelle bequem uhber die Paketverwaltung mit

nachfolgendem Befehl nachinstalliert werden.

Voller Hoffnung wurde nun wieder versucht, ovirt-engine-setup zu installieren, was aber wieder

scheiterte. An dieser Stelle verweigerte wieder das Fehlen zweier ominohser PHP Module das

Installieren der Engine.

Nun wurde wieder eine lange Google – Suchaktion gestartet, welche den Autor auf eine Seite brachte,

wo es um das Webinterface von Cockpit ging. Bei Cockpit handelt es sich um das WebGUI des unter

Diplomarbeit von Bogdanovic Theodor für die HFU 93

Abbildung 28: Realisierung des Virtualisierungssegmentes: Neu angelegtes Repository -
File CentOS-Engine-Setup_ovirt35.repo

Befehl 18: Realisierung des Virtualisierungssegmentes (Befehl): Installieren der Paketquelle epel

vdsm-tool --con�gure force

FullOpenSourceVirtualization

Fedora entwickelten Management Tools, welches fuhr die Konfiguration (auch Docker Container)

verwendet wird. Hier bemerkte der Autor auch gleich die Anhnlichkeiten zwischen den WebGUI's der

beiden Projekte, woraufhin klar war, dass hier wahrscheinlich eine HTML und JavaScript Vorlage zur

Erstellung dienten. Nun, nachdem klar war, wie die Sucheingaben bei Google lauten mussten, wurde

auch gleich die Seite https://www.patternfly.org/ entdeckt. Auf der Seite gibt es auch RPM Pakete

und ein Verweis auf den Repository Server. Nun konnte auch dieses Repository – File manuell angelegt

werden, wobei hier der Keyring Server auch tatsahchlich funktionierte. Nachfolgend der Auszug aus

dem neu angelegten Repository – File mit Namen CentOS-Patterfly_oVirt35.repo:

Nun kann wieder versucht werden, die Engine zu installieren und tatsahchlich: Alle Abhahngigkeiten sind

vorhanden und der Engine – Installer wurde erfolgreich auf das System gebracht! Nachfolgend der lang

ersehnte Befehl zur erfolgreichen ovirt-engine-setup Installation:

Nach Installation des Engine – Installers ist der grohbste Teil abgeschlossen und man kann sich der

eigentlichen Installation des Applicationservers widmen.

Diplomarbeit von Bogdanovic Theodor für die HFU 94

Abbildung 29: Realisierung des Virtualisierungssegmentes: Neu angelegtes Repository - File CentOS-
Patternfly_oVirt35.repo

Befehl 19: Realisierung des Virtualisierungssegmentes (Befehl): Installations von ovirt-engine-setup

yum install ovirt-engine-setup

FullOpenSourceVirtualization

 8.6.3.3 Einrichten der oVirt Engine (ovirt-engine-setup)

Die Einrichtung der Engine wird mittels des unter Befehl 13 aufgefuhhrten Befehls initialisiert. Man

wird zu einem Dialoggefuhhrten Interface gefuhhrt, welches die elementarsten Fragen zur Einrichtung

abfragt. Hierbei orientiert sich der Assistent an folgenden Fragekategorien:

 8.6.3.3.1 Network Configuration

In diesem Abschnitt werden zwei Fragen gestellt. Die erste betrifft die Aktivierung und automatische

Konfiguration der Firewall (firewalld). Hier kann, um einen hohen Sicherheitsstandard zu erreichen

mit Yes geantwortet werden. Die zweite Frage will den FQDN (Fully qualified DNS name) des Systems

wissen. Sollte kein DNS Server zur Verfuhgung stehen, welcher die Auflohsung uhbernimmt, muss ein

Eintrag in /etc/hosts mit der Syntax <IP> <Host.Domainname> <Hostname> eingetragen werden, da

ansonsten der Assistent nicht fortsetzt.

 8.6.3.3.2 Database Configuration

An dieser Stelle mohchte der Assistent wissen, was er mit der Datenbank machen muss. Hier wurde eine

lokale Installation gewahhlt, da zur Zeit der Realisation keine externe DB zur Verfuhgung stand.

 8.6.3.3.3 oVirt Engine Configuration

Dieser Abschnitt ist simpel im Aufbau. Er mohchte nur wissen, wie das lokal in die Postgres SQL

gespeicherte Passort lautet. Hier gibt es eine Lahngenpruhfung, welche die Komplexitaht des Passwortes

in Frage stellt. Es empfiehlt sich an dieser Stelle, ein sicheres Passwort zu wahhlen, da dieser Account

die vollen Rechte des spahteren Management – Centers besitzen wird und er sich weder deaktivieren

noch lohschen lahsst.

Diplomarbeit von Bogdanovic Theodor für die HFU 95

Befehl 20: Realisierung des Virtualisierungssegmentes (Befehl): Initialisierung der oVirt Installation

engine-setup

Abbildung 30: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; Network Configuration -
Screenshot

Abbildung 31: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; Database Configuration -
Screenshot

FullOpenSourceVirtualization

Zusahtzlich wird man gefragt, ob die Virtualisierungs- Subsysteme (VDSM) und GlusterFS installiert und

konfiguriert werden sollen. Beim Supermicro 1HE macht im Grunde beides keinen Sinn, da er weder

virtualisieren kann noch genuhgend Diskspace fuhr ein Gluster Volume besitzt. Man muss hier aber eine

Entscheidung treffen und kann ohne weiteres Both wahhlen. Es braucht spahter keines von beidem und

der Assistent ist zufrieden und kann ohne weitere Beschwerden weiter machen.

 8.6.3.3.4 PKI Configuration

In dieser Sektion wird automatisch ein Zertifikat (Public Key Infrastruktur) generiert, welches spahter

https fuhr das Management – Center ermohglicht. Hier ist aus Sicherheitsgruhnden auch nur https

mohglich, simples http wird per Redirecting stets zum SSL verschluhsselten URL umgeleitet. Hier muss

nur ein sinnvoller bzw. bei Unternehmen ein zulahssiger Name vergeben werden.

 8.6.3.3.5 Apache Configuration

An dieser Stelle fragt der Assistent zuerst, ob man die oVirt Frontpage als Standardseite konfiguriert

haben mohchte: Dies macht bei der Funktion dieser Standalone Maschine absolut Sinn und soll auch so

uhbernommen werden.

Die zweite Frage richtet sich an das im Schritt „PKI Configuration“ erzeugte Zertifikat und die damit

verbundene CA (Certificate Authority) welche ebenfalls in diesem Schritt lokal generiert wurde. Diese

Frage kann mit Automatic bestahtigt werden, was zu einer automatischen SSL Signierung fuhhrt.

Unternehmen kohnnen hier eigne und guhltige Zertifikate einspielen, um die lahstige Browser – Warnung

zu umgehen.

Diplomarbeit von Bogdanovic Theodor für die HFU 96

Abbildung 32: Realisierung des Virtualisierungssegmentes:
Einrichten der Engine; oVirt Engine Configuration - Screenshot

Abbildung 33: Realisierung des Virtualisierungssegmentes: Einrichten der Engine;
PKI Configuration - Screenshot

Abbildung 34: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; Apache Configuration - Screenshot

FullOpenSourceVirtualization

 8.6.3.3.6 System Configuration

An dieser Stelle kann ein ISO Storage mittels NFS Share eingerichtet werden. Dies macht aber keinen

Sinn, da VDSM zwar als einzurichten angegeben wurde, es aber nicht auf dem Supermicro 1HE

lauffahhig ist. Somit ist die Einbindung der ISO Domahne spahter ohnehin nicht mohglich.

 8.6.3.3.7 Misc Configuration

Dieser Abschnitt blieb beim eigentlichen Einrichten und bei diversen Vortests stets leer. Welche

Funktion er hat, kann nicht mit Sicherheit gesagt werden. Es wird vermutet, dass dies ein Script –

Unberbleibsel einer ahlteren oVirt Version ist.

 8.6.3.3.8 Abschlussbestätigung

Nach all diesen Fragen prahsentiert der Assistent eine Zusammenfassung der Konfigurationsparameter,

welche noch bestahtigt werden muhssen. Nach Bestahtigung beginnt der Assistent die Konfiguration, was

je nach System eine Weile dauern kann. Nach Beendigung der Konfigurationsarbeiten seitens des

Assistenten, startet er auch gleich die Engine und trahgt den Service ins Startverfahren von Systemd ein,

was die Installation auch rebootsicher macht.

Diplomarbeit von Bogdanovic Theodor für die HFU 97

Abbildung 35: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; System Configuration - Screenshot

Abbildung 36: Realisierung des Virtualisierungssegmentes: Einrichten
der Engine; Abschlussbestätigung - Screenshot

FullOpenSourceVirtualization

 8.6.3.3.9 Abschliessende Bemerkung

Die hier erzeugten Screenshots wurden in einer VMware Workstation mit einem Live – System erzeugt.

Das verwendete Live – System ist von der Version her identisch mit dem eigentlichen oVirt (3.5

Subversion 6), welches in dieser Arbeit fix auf einem CentOS 7 installiert wurde. Die eigentliche

Installation auf dem Supermicro 1HE wurde in einer Konsole direkt am Geraht vollzogen, was das

schiessen von Screenshots verunmohglichte. Die im Live – System verwendete CentOS Version

entspricht nicht der gleichen wie die der fix installierten, was aber technisch gesehen egal ist, da die

oVirt Version und somit das Verhalten des Assistenten identisch sind.

 8.6.4 Abschluss der freischwebenden Einrichtung

Dies war auch schon die gesamte Einrichtung des Virtualisierungs- Environments. Ab diesem Punkt

sind alle Nodes inklusive des Management – Centers installiert und auf einer tiefen Ebene konfiguriert.

Wie in den wenigen Schritten zu sehen war, ist die Einrichtung mit Hilfe der fertigen oVirt – Node

Images relativ einfach. Was bei diesem Arbeitsschritt am meisten Zeit gekostet hat, war das Debuggen

der Engine – Installation. Hier zeigte sich die Schwahche von open source Communities,

Neuentwicklungen vielleicht nicht zeitnahe aber wenigsten 1 – 2 Monate nach Freigabe des Finale

Releases sauber dokumentieren zu kohnnen. So waren aufgrund der teilweisen Ruhckportierung von in

Version 3.6 als stabil eingestuften Features nach Version 3.5 der Grund, warum viele in den Vortests

bekannte Websites massiv nach hinten rutschten in der Google Suche.

Diplomarbeit von Bogdanovic Theodor für die HFU 98

ALTERNATIVE

Mit Version 3.6 wurde die Hosted – Engine als quasi Standard freigegeben und nach 3.5

migriert. Mit ihr ist der Betrieb der Engine auch innerhalb der Virtualisierung möglich. So

können Kosten für Standalone Maschinen und deren Komponenten eingespart werden.

TIPP

Wer sich bei der Hosted Engine Sorgen um die Hochverfügbarkeit macht, sei an dieser Stelle

beruhigt. Mit Version 3.6 wurde auch die Hosted Engine HA zurückpor ert. Hierbei kann die

Engine über einen NFS Share innerhalb der Virtualisierung installiert werden. Dabei ist den

Virtualisierungs- Nodes die Existenz der Engine bewusst und eine in VDSM integrierte

Funk on sorgt dafür, dass die Nodes sich im NoGall selbst um den Neustart der Engine auf

einem anderen Node kümmern. Diese Funk on ist datacenterweit gül g.

STICHWORT: ovirt-hosted-engine-setup / hosted-engine --deploy

FullOpenSourceVirtualization

 8.7 Viele Einzelteile ein Cluster

Bis hier hin haben wir drei Einzelsegmente installiert und konfiguriert, nun wird es Zeit, aus vielem

eins zu machen. In diesem Abschnitt befassen wir uns mit der Zusammenfuhhrung der Teile Netzwerk,

Storage und Virtualisierung und bilden einen Cluster aus einem Guss. Hierbei wird die tiefste

Grundkonfigurationsebene behandelt. Aufgrund des angewendeten Konfigurationsverfahrens bis hier

hin kann alles vom oVirt Management – Center aus gesteuert werden. Dieser Teil befasst sich mit

folgenden Grundkonfigurationen:

• Erstellung des Data – Centers

• Erstellung der Cluster

• Anmelden/ Registrieren der Nodes

• Einbinden des GlusterFS Volumes als Master Storage

• Einbinden des ISO_STORE's per NFS

• Erstellen der Bondings fuhr das Management – Netzwerk

• Erstellen des Netzwerks fuhr die VM's

Nachfolgend werden die Schritte nach dem Verfahren „dokumentieren – beim – konfigurieren“

aufgebaut. Dies bedeutet, alle Konfigurationsschritte werden nach dem Anwenden auch gleich

niedergeschrieben.

 8.7.1 Erstellung des Data – Centers

Der erste Schritt in Virtualisierungs- Clustern ist stets die Erstellung mindestens eines Data – Centers.

Hierzu klicken wir als admin eingeloggt folgenden Weg:

Im sich nun ohffnenden Fenster sieht man bereits das standardmahssig angelegte Data – Center Default.

Es kann gelohscht werden, man kann es aber in diesem rohen Zustand auch einfach umbenennen.

Hierfuhr klickt man sich ins Kontextmenuh und wahhlt Bearbeiten. Nun kann man den Namen ahndern

und eine sinnvolle Beschreibung einfuhgen. Der Speichertyp wird auf gemischt gesetzt, da wir spahter

GlusterFS und NFS nutzen mohchten. Das Feld Kompatibilitätsversion sollte auf 3.5 belassen werden,

ausser man hat bereits einen bestehenden Cluster von einer ahlteren Version, dann muss diese Version

angegeben werden. Die Kategorie Kontingentmodus konnte nicht genau definiert werden. Es finden

sich auch keine genauen Beschreibungen zu dieser Kategorie und der verwendeten Version 3.5. Hier

muss angenommen werden, dass es aus einer ahlteren Version stammt und einst den Zweck der

Globalen Ressourcen Zuteilung hatte. Hier wird Deaktiviert gewahhlt. Der letzte Parameter ist die

Eingabe eines Kommentars, welcher zusahtzliche und von der Lahnge her unabhahngige

Zusatzinformationen bietet.

Diplomarbeit von Bogdanovic Theodor für die HFU 99

Befehl 21: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Erstellung eines Data - Centers

System (Seitenleiste) ausrollen → Data – Center

FullOpenSourceVirtualization

Nachfolgend die getahtigten Eingaben als Screenshot:

Der hier gewahhlte Name DC1R1 ist logischen Ursprungs und besagt, dass es sich hier um das Data –

Center 1 mit den Maschinen aus Rack 1 handelt. Dies kann mit OK bestahtigt werden und das war es.

 8.7.2 Erstellung der Cluster

Der nahchste logische Schritt in der Cluster Bildung ist auch gleich die Erstellung eines, oder wie in

diesem Fall gleich drei, Clustern. Hierfuhr geht man in der Seitenleiste folgenden Weg:

Hier kann man auf Cluster klicken und findet sich auf einer leeren Seite

wieder. Mittels Klick auf Neu, ohffnet sich ein Konfigurationsfenster, in

welchem folgende sechs Kategorien vorhanden sind, welche die gesamte

Konfiguration des Cluster verlangen. Hier soll exemplarisch eine

Konfiguration am Storage – Cluster vorgenommen werden, welche von

der Dokumentation her gesehen auf alle weiteren Cluster uhbertragbar

ist. In den nun nachfolgenden Schritten sollen alle

Konfigurationskategorien einzeln durchgearbeitet werden. Die Verweise

auf die anderen beiden Cluster werden dabei immer in Klammern

gesetzt. Hier gilt folgender Farbcode (Wo keine Farbcode – Angabe sind

gilt die Einstellung fuhr alle gleich)

Diplomarbeit von Bogdanovic Theodor für die HFU 100

Abbildung 37: Realisierung des Virtualisierungssegmentes:
Erstellung eines Data - Centers

Klicken 22: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Erstellung der Cluster

System (Seitenleiste) ausrollen → Cluster

Abbildung 38: Realisierung des
Virtualisierungssegmentes: Der
Klick - Weg zum Cluster erstellen

FullOpenSourceVirtualization

• Cluster-Storage → Bleibt exemplarisch Scharz

• Cluster-Level-High → ROT

• Cluster-Level-Middle → BLAU

Allgemein:

• Data – Center: Hier kann das zu verwendende Data – Center ausgewahhlt werden (DC1R1)

• Name: Der neue Name des Clusters. Er sollte aussagekrahftig sein → Cluster-Storage, Cluster-

Level-high, Cluster-Level-Middle

• Beschreibung: Hier empfiehlt es sich einen Bezugspunkt zu wahhlen, der auch auf die logische

Trennung der Cluster hinweist. An dieser Stelle wurde die CPU Familie als logischer Kontext

gewahhlt. Somit gilt → Storage for all Nodes, Cluster-SandyBridge, Cluster-Westmare

• Der Kommentar ist frei wahhlbar und soll hier nicht thematisiert werden.

• Der CPU-Typ ist hier von elementarer Bedeutung. Er wurde schon in der Hauptstudie

thematisiert und fuhhrte zu folgender Aufteilung:

◦ Cluster-Storage → Intel Nehalem Family

◦ Cluster-Level-M → Intel SandyBridge Family

◦ Cluster-Level-High → Intel Westmere Family

• Die Kompatibilitätsversion kann hier auf die aktuelle Version gesetzt werden.

• Die Optionen des Zufallsgenerators sind nicht zwingend notwendig. Sie beschreiben, woher

der Cluster bzw. Maschinen, die Zufallszahlen fuhr die UUID holen soll, welche bei oVirt zur

Generierung der Verzeichnisnamen dienen. Bei einem so kleinen Cluster kann man sich auf die

Software selbst stuhtzen und muss nicht /dev/random bemuhhen.

Diplomarbeit von Bogdanovic Theodor für die HFU 101

Abbildung 39: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage;
Allgemein

FullOpenSourceVirtualization

Optimierung:

• Arbeitsspeicheroptimierung: Hier kann angegeben werden, ob der reale Arbeitsspeicher

uhberschritten werden darf und ob eine Optimierung, basierend auf einer Server- oder Desktop

– Einstellung, genutzt werden soll. Da dies dem Autor aufgrund der stahrkeren

Wahrmeentwicklung zu riskant ist, wurde hier keine Unberschreitung gewahhlt.

• CPU-Threds: Definiert, ob die reale Kernanzahl, oder ob zur Maximierung der mohglichen VM –

Anzahl das regulahre Model Kernanzahl x 2 genutzt werden soll. Hier wird, um eine hohhere VM

Zahl zu generieren, das regulahre Modell gewahhlt.

• Memory-Balloon-Optimierung aktivieren: Hierbei versucht der Hypervisor, das Ballooning

des dynamisch variierenden Arbeitsspeichers zu optimieren, um das Maximum herauszuholen.

Auf diese Oprimierung kann bei einem Cluster dieser Grohsse im privaten Umfeld verzichtet

werden.

• KSM – Steuerung: Hierbei geht es um die Optimierung der NUMA (Non-Uniform Memory

Access), welche die RAM – Bausteine, die zu einem Kern gehohren, so uhber den Hypervisor

fixieren kann, dass eine VM bspw. sich nur in dieser Bausteingruppe aufhahlt. oVirt bietet uhber

die KSM Funktion die Mohglichkeit, dies sauber und zentral zu steuern und stets auf eine

korrekte Verteilung der VM's zu achten. Diese Funktion und die spahtere Nutzung der NUMA

Fuktion wird seitens des Autors strickt abgelehnt, da sie das Live-Migrieren der VM's

verunmohglicht.

Diplomarbeit von Bogdanovic Theodor für die HFU 102

Abbildung 40: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Optimierung

FullOpenSourceVirtualization

Migrationsrichtlinien:

• Hier kann angegeben werden, ob Live – Migration fuhr den Cluster mohglich sein soll oder nicht.

Dabei kann noch einmal granuliert werden, ob bei Live – Migration dies allgemein mohglich sein

soll oder nur fuhr hoch verfuhgbare VM's gelten soll. Da der Referenzcluster Cluster-Storage hier

weder die Leistung (CPU) noch den Arbeitsspeicher hierfuhr hat, ist er explizit gesperrt fuhr

diese Funktion. Cluster-Level-high und Cluster-Level-Middle duhrfen und sollen VM's in jedem

Fall und ohne HA Einschrahnkung migrieren duhrfen.

Cluster – Richtlinien:

• Eigenschaften: Hier gibt es einige mohgliche Einstellungen. Die meisten beziehen sich auf das

Verhalten bei aktivem HA und Ressourcenzuteilungen. Zum Beispiel kann hier definiert werden

wie viele VM's laufen duhrfen, bis die Anzahl als zu hoch eingestuft wird und eine Verteilung

stattfinden muss. Alle Optionen an dieser Stelle durchzugehen, wuhrde den Rahmen dieses

Kapitels sprengen. Hier wird nichts konfiguriert und die systemeigenen Default Werte bleiben

wie sie sind. Es wuhrde ohnehin keinen Sinn machen hier Parameter zu uhbergeben, da hierfuhr

das Power – Management uhber LOM aktiv sein muhsste.

• Optimierung für Auslastung: Definiert, ob der Cluster fuhr Auslastung, also eine hohe Anzahl

an VM's, oder fuhr eine hohe Geschwindigkeit, also eine kleinere Anzahl an VM's, konfiguriert

werden soll. Hier soll so viel wie mohglich an VM's herausgeholt werden, weswegen

Optimierung für Auslastung gewahhlt wird.

• HA-Reservierung aktivieren: Diese Option aktiviert die hoch Verfuhgbarkeit des Clusters,

damit die VM's eines ausgefallenen Nodes von einem anderen uhbernommen werden. Diese

Option ist beim Cluster-Storage deaktiviert, da er dies nicht kohnnen muss. Bei Cluster-Level-

high und Cluster-Level-Middle nuhtzt dies ohne Power – Management zwar nichts (Semi-

Automatic-HA), es wird aber prahventiv aktiv gelassen, da die Mohglichkeit einer spahteren

Realisierung noch offen bleibt.

• Die Option Vertrauenswürdigen Dienst aktivieren konnte nicht exakt geklahrt werden,

weswegen an dieser Stelle auf eine Definition verzichtet wird.

• Benutzerdefinierte Seriennummern-Richtlinie angeben: Hier kann die Vergabe der

Diplomarbeit von Bogdanovic Theodor für die HFU 103

Abbildung 41: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage;
Migrationsrichtlinien

FullOpenSourceVirtualization

Seriennummer an die VM's definiert werden. Diese Option ist fuhr grosse Hoster sicherlich von

Bedeutung, jedoch wird hier darauf verzichtet und die Vergabe oVirt uhberlassen.

Konsole:

• oVirt unterstuhtzt zwei arten von Video – Konsolen, einmal das heute als veraltet geltende VNC

und das von RedHat entwickelte und weit modernere SPICE Protokoll. SPICE bietet heute die

Mohglichkeit von extrem hoher Video Auflohsung und der Weiterleitung von Audio und USB an

den Client. Standardmahssig sollte SPICE heute in jedem Fall verwendet werden. An dieser Stelle

kann ein SPICE – Proxy vergeben werden, falls man aus Sicherheitsgruhnden keine direkte

Verbindung zu Hypervisor wuhnscht. Aufgrund der Grohsse des Clusters und der Tatsache, dass

der Autor auch die Kontrolle daruhber hat, wer Zugang hat, kann hier auf einen Proxy verzichtet

werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 104

Abbildung 42: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Cluster-Richlinien

Abbildung 43: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Konsole

FullOpenSourceVirtualization

Fencing aktivieren:

• Hier wird das Verhalten von HA definiert, welches abhahngig vom Power – Management die

Initialisierung des Neustarts der VM's auf einem anderen Cluster – Node in die Wege leitet.

Hier kann Fencing aktivieren aktiv gelassen werden, sodass oVirt die Nodes stahndig auf

Verfuhgbarkeit pruhft und im Falle eines Node Ausfalles versucht, ihn uhber das LOM Interface neu

zu starten oder herunterzufahren. Dabei kann hier angegeben werden, ob das Fencing

uhbersprungen wird, wenn Verbindungsprobleme (ausgefallene Hosts) in den Prozentual –

Bereichen 25, 50, 75 und merkwuhrdigerweise 100% liegen. Die zweite Option „Fencing

uhberspringen, wenn der Host aktive Lease zum Speicher hat “ konnte nicht exakt geklahrt

werden. Weder die Aussagen auf deutsch noch auf englisch ergeben Sinn und es konnte keine

saubere Dokumentation im Internet gefunden werden. Lediglich ein Bugreport brachte etwas

Weniges an Erkenntnis, woraus die Schlussfolgerung gezogen wurde, dass das Fencing

abgelehnt wird, wenn der Host die Speicherdomahne als Gast (external) nutzt. Jedoch wurde

diese Einstellungsmohglichkeit an Storage – Anbindung nie so in dieser Form unter oVirt 3.5

gefunden. Das Fencing wurde fuhr die Cluster Cluster-Level-high und Cluster-Level-Middle

aktiviert, auch wenn diese Mohglichkeit momentan aus technischen Gruhnden gar nicht mohglich

ist. Sie stohrt den regulahren Betrieb in keinster Weise, ausser, dass sie eine Unmenge an

Warnungen produziert.

 8.7.3 Kurzer Exkurs zu SSH Soft Fencing

Technisch ist es mohglich, bei aktivem Kernel Dumps (kdump) die light Version von Fencing zu nutzen.

Diese ist rein softwarebasiert und benohtigt kein Power – Management in Kombination mit einem LOM

– Interface, da sie den Host per SSH direkt anspricht. Dabei wird versucht, den VDSM Daemon wieder

zu starten. Jedoch uhbernimmt diese Aufgabe heute der Watchdog Daemon, was diese Lohsung im

Allgemeinen immer weiter in die Vergessenheit drahngt. Zusahtzlich muss man sich die Frage stellen, was

dies denn uhberhaupt fuhr einen Sinn hat, wenn der Host selbst nicht mehr ansprechbar ist. Er kann ja in

eine Kernel Panic fallen und somit einfach hahngen bleiben, dann macht Zugriff per SSH wenig Sinn. Aus

diesem Grund wurde auf diese Funktion verzichtet, um die unnohtige Belastung durch kdump zu

vermeiden.

Diplomarbeit von Bogdanovic Theodor für die HFU 105

Abbildung 44: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Fencing-Richtlinien

FullOpenSourceVirtualization

 8.7.4 Einbinden / Registrieren der einzelnen Nodes

Nun haben wir im vorhergehenden Schritt das fuhr diesen physischen Cluster notwendige Data – Center

angelegt und die logische Aufteilung nach Vorstudie an internen Clustern erzeugt. Jetzt wird es Zeit alle

Nodes in die dafuhr vorgesehenen Cluster zu verteilen. Hierbei werden zwei von den drei mohglichen

Einbindevarianten aufgezeigt, welche sich bei den beiden eingesetzten Installationsvarianten ergeben.

In diesem ersten Schritt wird auf die Netzwerkkonfiguration (Bonding) vorlahufig verzichtet, da es

aufgrund des stabilen Stacks von oVirt immer und zu jeder beliebigen Zeit mohglich ist.

 8.7.4.1 Einbindeprozess anhand der CentOS Minimalinstallation

Wie bereits erwahhnt, bietet die VDSM – Abstraktionsschicht die Mohglichkeit der konsolenseitigen

Einbindung. Diese ist jedoch mit langen Kommandoeingaben verbunden und eindeutig nicht zu

empfehlen. Hier ist die Einbindung aus dem oVirt Center der Einfachste und zugleich sicherste Weg.

Dabei wird hier der Host gfsn1.mgmtdom (Storage Node 1) als Referenz konfiguriert, wobei sich die

Konfiguration auch auf den zweiten Storage Node uhbertragen lahsst. Hierfuhr klickt man wie folgt:

Hierbei ohffnet sich ein kleines Konfigurationsfenster, welches sich in vier Konfigurationskategorien

aufteilt. Auch hier werden wir die Kategorien Schritt fuhr Schritt durchgehen, beginnend mit der bei

oVirt stets ersten und wichtigsten:

Allgemein:

• Data-Center: Hier wird das Data – Center ausgewahhlt, in unserem Fall gibt es ja nur eins.

• Host-Cluster: Hier kann der Host einem internen Cluster zugewiesen werden. Da es sich um

einen Storage Node handelt, soll hier auch der Cluster Cluster-Storage aus der Auswahlliste

gewahhlt werden.

• Name: Hier kann dem neuen Host ein oVirt- interner Name zugewiesen werden, jedoch

empfiehlt es sich hier nicht vom eigentlichen Hostname abzuweichen, da bei einer grossen

Host Anzahl ein kaum durchschaubares Chaos entstehen kohnnte. Der Name in dieser

Referenzkonfiguration ist gleich dem eigentlichen Hostnamen, also gfsn1.mgmtdom.

• Kommentar: Bezuhglich der Dokumentation der Arbeit an dieser Stelle, ist hier mittlerweile ein

Kommentar mehr notwendig.

• SSH – Port: Innerhalb dieses Projektes und der starken Isolation des Cluster durch die

Firewall, sind Abweichungen der Port nicht notwendig. Aus Diesem Grund kann hier der

vorgeschlagene Default Port 22 auch so belassen werden.

• Authentifizierung/ Benutzername: Dieser wird seitens oVirt per Default auf root gesetzt

und kann auch so belassen werden.

• Authentifizierung/ Passwort: Dieser Punkt spricht fuhr sich selbst.

Diplomarbeit von Bogdanovic Theodor für die HFU 106

Befehl 23: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Hosts einbinden mit Assistenten

Hosts (Registerkarte) → Neu (innerhalb des neuen Fensters)

FullOpenSourceVirtualization

• Authentifizierung/ Öffentlicher SSH-Schlüssel: Diese Option erlaubt anstelle eines

Passwortes die Authentifizierung mittels eines Public – Keys, welcher auf dem Host hinterlegt

werden muss. Dieser Key wurde bereits erzeugt und ist ersichtlich beim Auswahhlen der Option.

Er muhsste von der Liste kopiert und dem Host unter /root/.ssh/authorized_keys manuell

hinzugefuhgt werden. Auf diesen Mehraufwand kann aber an dieser Stelle verzichtet werden, da

dies ohnehin automatisch beim Einbinden des Hosts im Hintergrund geschieht und zugleich

die Standard- Kommunikationsart von oVirt ist.

• Erweiterte Parameter: Hier kohnnen zwei Parameter aktiviert bzw. deaktiviert werden.

◦ Automatisches Konfigurieren der Host-Firewall; aktiviert den CentOS eigenen firewall

Daemon und konfiguriert ihn zugleich. Diese Konfiguration wurde so per Default aktiv

gelassen und spahter wieder manuell auf den Host deaktiviert, da sich hier ein

Konfigurationsfehler seitens oVirt in Bezug auf die GlusterFS Ports zeigte. Auf manuelle

Eingriffe in die Host – Configs wurde verzichtet, da aufgrund der restriktiven Regelsahtze

seitens des Netzwerksegmentes diese Firewall ohnehin uhberfluhssig wird und nur

Ressourcen verschwenden wuhrde.

◦ JSON-Protokoll verwenden; wurde einmal mit und einmal ohne getestet. Es konnte weder

ein Vor- noch Nachteil erkannt noch eine klar definierende Dokumentation gefunden

werden. Hier wird einfach der Defaultwert (aktiv) belassen.

Energieverwaltung:

• Dieser Punkt stellt das Power – Management dar und wird hier nicht konfiguriert, da ein Host

dies nicht unterstuhtzt und somit die Konfiguration sinnlos wahre. Hier kommt das Konzept

Semi-Automatic-HA zum Zuge.

Diplomarbeit von Bogdanovic Theodor für die HFU 107

Abbildung 45: Realisierung des Virtualisierungssegmentes: Assistent zu
einbinden der Nodes; Allgemein

FullOpenSourceVirtualization

SPM:

• Die Option Storage Pool Manager definiert, welcher Node fuhr das Sharen der GlusterFS und

NFS Informationen innerhalb des Data – Center zustahndig ist. Zwar wird die Konfiguration im

oVirt Center erledigt, aber das eigentliche Verteilen der Informationen uhbernehmen die Nodes

untereinander selbst. Der Grund ist das Aufrechterhalten der Shares beim Ausfall der oVirt –

Engine. Hier muss angegeben werden, welcher Node welche Prioritaht besitzt, wobei der erste

ausgewahhlte Node, belanglos, welche Prioritaht ihm zugewiesen wird, die Rolle des Masters

uhbernimmt. Wurden aber zu Anfang Prioritahten tiefer als Hoch vergeben, so wird der erste

Host, dem die Prioritaht Hoch verliehen wird zum neuen Master. An dieser Stelle macht es Sinn

die Storage Nodes mit der Prioritaht Hoch zu klassifizieren, da sie nicht virtualisieren und

primahr fuhr die Storages zustahndig sind. Storage Node 1 wurde als erster mit Hoch klassifiziert

und ist somit der Master, was sich spahter in in der Host – Liste daran erkennen lahsst, dass alle

Hosts bis auf den Master die Priorisierungs- Angabe aufgefuhhrt haben, der Master aber trahgt

das Siegel SMP. Sollte der Master ausfallen, so uhbernimmt der nahchste Host mit der hohchsten

Priorisierung. Fahllt dieser auch aus, so uhbernimmt der nahchste mit der entsprechenden

Priorisierung, usw.

Konsole:

• Hier kann auf Host Ebenen die SPICE – Proxy Weiterleitung spezifiziert werden. Auch an

diesem Punkt kann die Konfiguration, ahhnlich der Cluster – Konfiguration, deaktiviert belassen

werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 108

Abbildung 46: Realisierung des Virtualisierungssegmentes:
Assistent zu einbinden der Nodes; SPM, Master ist GlusterFS
Node 1, der zweite sichtbare Eintrag ist Node 2

Abbildung 47: Realisierung des Virtualisierungssegmentes: Assistent zu Einbinden
der Nodes; Konsole, Proxy Weiterleitung für die Darstellungskonsole

FullOpenSourceVirtualization

 8.7.4.2 Einbindeprozess anhand eines oVirt – Node Images

Im vorhergehenden Beispiel haben wir gesehen, wie es mit einer CentOS Rohinstallation funktioniert.

Technisch gesehen kohnnten wir dies auch mit den Node – Images machen, jedoch soll hier auch die

Alternative kurz angeschnitten werden. Hierbei muss man uhber einen Monitor und eine Tastatur direkt

Kontakt zum Node haben. Im Control – Menuh des Nodes muss man auf die Registerkarte in der

Seitenleiste rechts auf oVirt Engine gehen. Hier kann man nun zuoberstdie IP – Adresse bzw. den FQDN

des Management Centers eingeben. Der Default Port 443 kann so belassen werden. Allfahllige

Zertifikatsfragen kohnnen im Allgemeinen ignoriert werden. Optional kann hier auch das Passwort fuhr

eine Art Zweitverbindung angegeben werden. Dieses Passwort wird zusahtzlich zum bestehenden

genutzt und soll SSH weiterhin zum Host per Konsole ermohglichen. Diese Angabe scheint aber ein

Unberbleibsel einer ahlteren Version zu sein, da trotz Angabe der Host so konfiguriert wird, dass ein

Passwort – Login nicht mohglich ist. Er benohtigt trotzdem weiterhin eine Key – Authentifizierung, was

aber nicht mohglich ist, da man nicht zum Useraccount des Hosts gelangen kann, um ihn zu hinterlegen.

Man kann sich an dieser Stelle die Eingabe eines Passwortes sparen und mit Save & Register

bestahtigen. Wechselt man nun in das oVirt Management Center, so wird der Host unter System

(Seitenleiste) → Hosts (Registerkarte) als noch nicht alloziert aufgefuhhrt. Mittels Rechtsklick

(Kontextmenuh) und „Hinzufuhgen“, gelangt man zum Konfigurationsassistenten, welcher vom Ablauf

her identisch mit dem Vorgehen unter Punkt 8.7.3.1 ist. An dieser Stelle werden die restlichen Nodes

ahquivalent zum vorhergehenden Einbinden der Storage Nodes ins System registriert. Hierbei gelten

aber folgende Abweichungen:

• Die Fujitsu Maschinen wurden unter Allgemein in den Cluster Cluster-Level-Middle

integriert.

• Die beiden Power Maschinen wurden unter Allgemein in den Cluster Cluster-Level-High

eingebunden.

• Alle Nodes wurden unter SPM mit der Prioritaht Niedrig eingebunden. Mehr Prioritaht ist an

dieser Stelle fuhr die Virtualisierungs- Nodes nicht notwendig.

Dieses Vorgehen wurde fuhr die Nodes ovn1 – 4.mgmtdom angewendet und ist vom

Konfigurationsablauf her gesehen bis auf die oben genannten drei Punkte identisch mit der

Referenzkonfiguration unter Punkt 8.7.3.1 „Einbindeprozess anhand der CentOS Minimalinstallation“.

Hier sollte nur gezeigt werden, dass es von den Nodes aus auch eine Anmelde – Alternative gibt.

Zeitsparender ist mit Sicherheit die unter Punkt 8.7.3.1 genannte Methode, welche in jedem Fall zu

bevorzugen ist.

Diplomarbeit von Bogdanovic Theodor für die HFU 109

FullOpenSourceVirtualization

 8.7.5 Einbinden des GlusterFS Volumes als Master Storage

Nun, da alle Maschinen in den fuhr sie vorgesehenen Clustern untergebracht sind, sollen wir noch den

Master Storage einbinden, um uhberhaupt etwas speichern zu kohnnen. Wie wir uns erinnern, haben wir

alles Notwendige bereits vorbereitet. So ist es auch hier mohglich, die komplette Einbindung des

vorbereiteten GlusterFS Volumes oVirtStorage1 aus der Engine aus zu vollziehen. Hierfuhr klicken wir

folgenden Weg:

Nun ohffnet sich ein kleines Konfigurationsfenster, in welchem wir nachfolgende Parameter definieren

muhssen:

• Name: Hier kann ein unabhahngiger und aussagekrahftiger Storagename vergeben werden. In

unserem Fall nennen wir in schlicht und einfach Storage-R1, woraus wir schliessen kohnnen,

dass der Storage im Rack 1 beheimatet ist.

• Data-Center: Storages, welche in oVirt definiert werden, sind stets in einem Data – Center

aktiv. Dies macht auch Sinn, da sich ja auch die einzelnen Cluster in einem Data – Center

befinden muhssen.

• Beschreibung und Kommentar: Diese Punkte sind selbsterklahrend.

• Dämonenfunktion/Speichertyp: Hier kann die Art definiert werden, wie und mit welcher

Anbindeart der Storage in die Domahne geholt werden soll. Fuhr den Master Storage wahhlen wir

Data/GlusterFS, da wir eine allgemeine Speicherquelle (Data) wollen, welche GlusterFS als

Verfahren nutzt.

• Format: Dieser Punkt kann bei GlusterFS nicht geahndert werden und muss V3 sein, da Gluster

erst ab Major – Release 3.x einsetzbar ist.

• Host verwenden: Jeder Host, welcher eine Funktion im Cluster hat, muss auch mittels VDSM

Daemon eingebunden werden. Eine neutrale Speicherquelle ohne VDSM ist nicht mohglich. Dies

sorgte fuhr etwas Unmut bei anderen Distributionen, was RedHat dazu veranlasste, hier der

restlichen open source Community etwas entgegenzukommen. So ist in Version 3.6 von oVirt

nun auch eine Portierung von VDSM auf Debian vorhanden. An dieser Stelle geben wir nun

einen der Gluster Storage Nodes an, welcher ist vollkommen egal. Der Ordnung halber

benutzen wir hier den ersten, also gfsn1.mgmtdom.

• Pfad: Der Pfad zur Speicherquelle folgt der Syntax <NodeName>:<GlusterVolume> und lautet

somit gfsn1.mgmtdom:oVirtStorage1.

• VFS-Type und Einhahngeoptionen: Sind hier vorgegeben und man muss und kann nicht wahhlen.

• Quorum: Hier ist ein Infotext, welcher darauf hinweist, dass Quorum client- und serverseitig

aktiv sein sollte. Wie wir uns erinnern wurde diese Option auch so beim Erstellen des Volumes

Diplomarbeit von Bogdanovic Theodor für die HFU 110

Befehl 24: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Einbinden des Master Storage

Speicher (Registerkarte) → Neue Domäne

FullOpenSourceVirtualization

im Nachhinein definiert. Getestet wurde aber in einer virtualisierten Umgebung mit und ohne.

Ein Unterschied konnte nicht festgestellt werden.

Aufgrund der Vorbereitungen im Vorfeld war dies auch schon der grohsste Teil des Einbindeprozesses.

Dies war die gesamte Prozedur. Die Storage Domahne wurde unseren angaben zufolge automatisch ins

Data – Center eingebunden. Es ist auch mohglich unter Data – Center „none“ anzugeben. Dies ist

sinnvoll, wenn man mehrere Data – Centers hat und den Storage temporahr plazieren mohchte, um

anschliessend das endguhltige Ziel zu bestimmen. In diesem Fall kann einfach der Storage angeklickt

werden und im unteren Bereich des Browsers ohffnen sich die „Optionen“. Hier kann unter Data –

Center → Zuordnen bestimmt werden, wem der Storage gehohren soll.

 8.7.6 Einbinden des ISO_Store's per NFS

Das Einbinden der ISO Domahne ist vom Ablauf her identisch mit dem vorhergehenden. Was sich hier

explizit ahndert, abgesehen vom Namen und den Kommentaren, ist die Domahnenfunktion/Speichertyp.

Hier muss ISO/NFS angegeben werden. Ob man hier bei NFS den ersten oder den zweiten Gluster

Storage Node wahhlt ist ebenfalls belanglos. Hier ist ein Punkt jedoch von grohsster Wichtigkeit, welcher

unter Erweiterte Optionen definiert werden muss. Wie wir uns erinnern, haben wir beim Bilden der

Gluster Volumes (beide) TCP als primahres Unbertragungsprotokoll gewahhlt. Nun ist aber der zentrale

Einbindemechanismus bei NFS auf UDP ausgelegt. Unter Erweiterte Optionen haben wir die

Mohglichkeit unter Zusätzliche Einhängeoptionen den Wert mountproto=tcp einzutragen. Somit

kann der GlusterFS Server auf den Nodes als nativer NFS Server genutzt werden, es muss also kein

zusahtzliches nfs-server Paket nachinstalliert zu werden. Die Verteilung der Daten auf beide Nodes kann

hier natuhrlich nicht uhber den Gluster Client gesteuert werden, da es sich ja um einen NFS Mountpoint

handelt. Das ist aber absolut kein Problem, da sich der GlusterFS – Server auf dem Einbinde- Node

gfsn1.mgmtdom selbst um das Verteilen der Daten kuhmmert. Somit entscheidet an dieser Stelle nicht

der Client, sondern der Server ,was wohin soll und kopiert alles, was fuhr gfsn2.mgmtdom bestimmt ist

direkt nach Empfang zu ihm. Hier muss auch noch erwahhnt werden, dass bei oVirt nur eine einzige ISO

Diplomarbeit von Bogdanovic Theodor für die HFU 111

Abbildung 48: Realisierung des Virtualisierungssegmentes: Einbinden von GlusterFS Storage mittels
Assistenten

FullOpenSourceVirtualization

Domahne definiert werden kann.

Dies war es im Allgemeinen mit der Storage Einbindung. Nun kohnnte unser Virtualisierungs- Cluster

sogar betrieben werden, da ja jetzt auch Speichermohglichkeiten vorhanden wahren.

Bezuhglich des Kopierens der ISO's auf den ISO_STORE gibt es eine Menge an Mohglichkeiten. Der Autor

nutzt hier den GlusterFS Node selbst fuhr diese Prozedur. Hierfuhr kann man mit nachfolgendem Befehl

auf gfsn1.mgmtdom arbeiten.

Mit diesem Befehl bindet man man den NFS Mountpoint lokal ins /mnt, wobei bei anderen

Installationen natuhrlich die UUID abweichen wird. Was aber bei allen gleich sein wir, ist das

Verzeichnis 11111111-1111-1111-1111-111111111111. Dieses ist allgemeinguhltig und steht

oVirt- Intern fuhr ISO Domahne. Nun kann das gewuhnschte ISO auf der Konsole mittels wget

heruntergeladen werden und der Mountpoint mittels umount wieder gelohst werden. Diese Methode

wirkt umstahndlich, ist aber eine beliebte Praktik des Autors.

Diplomarbeit von Bogdanovic Theodor für die HFU 112

Abbildung 49: Realisierung des Virtualisierungssegmentes: Einbinden von GlusterFS Storage als ISO
Domäne per NFS (hier die Fertige Konfiguration)

Befehl 25: Realisierung des Virtualisierungssegmentes (Befehl): oVirt - Engine; Einbinden des Master Storage

mount.nfs -o mountproto=tcp gfsn1.mgmtdom:/ISO_STORE /mnt

cd /mnt/8f62618b-7910-4987-a6a2-052b8b083bfa/ 11111111-1111-1111-1111-111111111111

FullOpenSourceVirtualization

 8.7.7 Erstellen der Bondings für das Management – Netzwerk

Wie bereits erwahhnt, kohnnten wir an dieser Stelle bereits los virtualisieren. Um aber etwas mehr

Performance herauszuholen, werden wir uns in diesem Abschnitt mit dem Bonding der

Netzwerkschnittstellen des Managementteils beschahftigen. Prinzipiell gilt bei den meisten

Virtualisierungs- Umgebungen der Grundsatz, zuerst das Netzwerk definieren und dann entsprechend

den Hosts zuteilen. Aus diesem Grund gehen wir in folgendes Menuh unter oVirt:

Auf dieser Seite treffen wir das erste Mal keine leere Konfiguration an. Hier ist das ovirtmgmt

Netzwerk bereits per Default von VDSM eingerichtet worden. Die Einstellungen innerhalb dieses

Netzwerkes sind simpel, sie beinhalten nur das MV-Netzwerk, welches standardmahssig aktiv ist. Diese

Einstellung belassen wir auch so und gehen zum ersten Host. An dieser Stelle werden wir stets oVirt

Node 4 (ovn4.mgmtdom) als Referenzkonfiguration arbeiten. Sahmtliche hier getahtigten Einstellungen

sind entweder eins zu eins uhbertragbar oder es wird spezifisch erwahhnt, wo Differenzen zu den

anderen Nodes vorhanden sind. Die Interface – Bezeichnungen variieren natuhrlich von Host zu Host,

jedoch wird hier nicht spezifisch darauf eingegangen.

Bevor wir aber zu oVirt Node 4 gehen, bleiben wir noch auf der Seite fuhr die Netzwerkkonfigurationen,

wo wir etwas vorgreifen kohnnen und gleich das zweite benohtigte Netzwerk anlegen. Auf dieser Seite

wahhlen wir Neu, woraufhin ein Konfigurationsfenster aufgeht. Das Design ist ahhnlich, wie wir es schon

kennengelernt haben. Dieses Fenster unterteilt sich in drei Kategorien:

Allgemein:

• Data - Center: Hier kann wieder nur das eine bestehende ausgewahhlt werden.

• Name: Ein aussagekrahftiger Name fuhr das Netzwerk, hier VMnet1

• Kommentar: kommentarlos

• Exportieren: Mit dieser Option kann ein Netzwerk zu einem fremden Provider (bspw. Data –

Center) angegeben werden. Es ist nuhtzlich falls man ein Transitnetzwerk benohtigt fuhr eine

Migration von bestehenden VM's zu einem Provider bzw. eine Migration in Planung hat. So

kohnnen die VM's noch im aktuellen Data – Center betrieben werden, nutzen aber die

Netzwerkkonfiguration eines anderen Data – Centers. Diese Option benohtigen wir nicht.

• Netwerk-Parameter:

◦ Netzwerkbezeichnung: Kann an dieser Stelle nicht geahndert werden, jedoch spahter an

einer anderen Stelle. Diese Option ermohglicht die abweichende Bezeichnung des

Netzwerkes zu Standard.

◦ VLAN-Tagging aktivieren: Hier kann einem Netzwerk eine VLAN Tag mitgegeben werden

(NUR eine Nummer), falls man auf diese Weise separieren mohchte. Diese Option wird hier

Diplomarbeit von Bogdanovic Theodor für die HFU 113

Befehl 26: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Einbinden des Master Storage

Netzwerk (Seitenleiste) →

FullOpenSourceVirtualization

nicht benohtigt.

◦ VM-Netzwerk: Ist per Default immer aktiv und soll es auch sein.

◦ MTU: Hier empfiehlt es sich, im Allgemeinen nichts zu ahndern falls man mit VPN arbeitet,

da bei Tunneln standardmahssig Don't Fragment aktiv ist.

Cluster:

Hier kann angegeben werden, welche Cluster dieses Netzwerk nutzen duhrfen. Dabei wird differenziert

zwischen Zuordnen, also soll das Netzwerk unter den Nodes sichtbar sein, und Erforderlich, wobei

hier die Nodes in den angegeben Cluster das Netzwerk als zwingend notwendig einstufen und es nicht

mehr aus der Auswahlliste entfernbar ist.

Diplomarbeit von Bogdanovic Theodor für die HFU 114

Abbildung 50: Realisierung des Virtualisierungssegmentes: Erstellen eines neuen Netzwerkes über
den Assistenten; Allgemein.

Abbildung 51: Realisierung des Virtualisierungssegmentes: Realisierung des Virtualisierungssegmentes:
Erstellen eines neuen Netzwerkes über den Assistenten; Cluster wählen.

FullOpenSourceVirtualization

VNIC-Profile:

Hier kohnnen bereits erste Limitierungen bezuhglich Durchsatzbegrenzung (QoS) angewendet werden.

Doch hierzu spahter mehr im nachfolgenden Kapitel.

Wenn wir alles richtig gemacht haben, sollte in der Netzwerkansicht folgendes Bild anzutreffen sein.

Nach diesem kurzen Vorgreifen kehren wir wieder zur eigentlichen Bonding Konfiguration des

Management Netzwerkes zuruhck. Wir gehen dazu auf die Konfigurationsseite des Virtualisierungs-

Node 4:

Hier sehen wir eine Liste mit sahmtlichen verfuhgbaren Netzwerkschnittstellen. Bei diesem Host wird

gluhcklicherweise die verkuhrzte Schreibform der Namen angewendet. Nicht in einen running – Status

versetzte Schnittstellen sind an dieser Stelle als rotes, nach unten blickendes Dreieck ersichtlich. Dies

macht die Identifikation der Schnittstellen schwierig. Wenn alle Netzwerkkarten vom gleichen Typ

sind, wird die Angelegenheit noch schwieriger. Gluhcklicherweise sind bei dieser Maschine die Onboard

Schnittstellen und die PCI Karte von unterschiedlichen Herstellern, was die Konfiguration hier etwas

einfacher gestaltet. Da das Default Netzwerk ovirtmgmt bereits einer Schnittstelle zugewiesen ist

(p6p1), lahsst sich ohne langes Herumprobieren feststellen, dass p6p2 der nahchste aktive Nachbar sein

muss, da ja nur diese zwei an der PCI Karte angeschlossen sind. Hat man seine Ports identifiziert, so

kann man in dieser Subsektion den oberhalb liegenden Button Hostnetzwerk einrichten wahhlen.

Siehe dazu nachfolgende Abbildung:

Diplomarbeit von Bogdanovic Theodor für die HFU 115

Abbildung 52: Realisierung des Virtualisierungssegmentes: Erstellen eines neuen Netzwerkes über den Assistenten;
Gesamtübersicht über alle Netzwerke.

Befehl 27: Realisierung des Virtualisierungssegmentes (Klicken): Zum Konfigurationsmenü des Netzwerks von
ovn4.mgmtdom

Auf Seitenleiste → Cluster (Ausrollen) → Cluster-Level-high (Ausrollen) → Hosts (Ausrollen) →

ovn4.mgmtdom → Hosts (Registerkarte) → NetzwerkschniRstellen (untere Registerkarte)

FullOpenSourceVirtualization

Anschliessend ohffnet sich ein Konfigurationsfenster, in welchem wir bequem per Drag and Drop

arbeiten kohnnen. Hier sehen wir sahmtliche Interfaces in eigenstahndigen Kahstchen, wo wir einfach

unser p6p2 per Maus packen und auf p6p1 ziehen kohnnen. Bei dieser Aktion erkennt der Assistent

gleich, dass wir irgend eine Art von Aggregation wuhnschen und ohffnet uns ein kleines Fenster in

welchem die genauen Parameter definiert werden kohnnen.

Im Konfigurationsfenster geben wir einen Namen, hier Bond1,

ein und wahhlen einen softwareseitigen Bond-Modus aus. Wir

wahhlen hier aus der Auswahlliste den Mode 2 aus (balance-

xor), da dieser lastverteilend und ausfallsicher ist. Zugleich

verteilt er die Verbindungen nach einem IP- Hash basierten

Algorithmus auf die einzelnen Gegenstellen, wobei diese

kontinuierlich fuhr einen gewissen Zeitraum auch fixiert

werden. Auf eine Bezeichnung kann an dieser Stelle verzichtet

werden, da der eigentliche Schnittstellenname genug

aussagekrahftig ist. Sind die beiden Hauptparameter gesetzt,

kann mit OK bestahtigt werden und man landet auf der neu

erstellten Unbersicht.

Diplomarbeit von Bogdanovic Theodor für die HFU 116

Abbildung 53: Realisierung des Virtualisierungssegmentes: Host-Netzwerk mit Bonding erstellen Teil 1
(ovirtmgmt)

Abbildung 54: Realisierung des Virtualisierungssegmentes: Host-Netzwerk mit
Bonding erstellen Teil 2 (ovirtmgmt)

Abbildung 55: Realisierung des
Virtualisierungssegmentes: Host-Netzwerk mit
Bonding erstellen Teil 3

FullOpenSourceVirtualization

Ist der optische Eindruck auf der Unbersichtsseite in Ordnung, kann man auch hier mit OK bestahtigen.

Ist man sich bei einer Konfiguration aber nicht sicher, besteht noch die Mohglichkeit, das

Optionskahstchen im unteren Bereich des Konfigurationsmenuhs, Netzwerkkonfiguration speichern,

auszuschalten. In diesem Fall wird die Konfiguration zwar angewendet, jedoch nicht gespeichert. Sollte

irgendetwas schiefgehen, oder die Konfiguration schneidet einen vom Host ab, so genuhgt nur ein

Neustart des Hosts und alles ist wie vor der Konfiguration. Das Optionskahstchen namens Verbindung

zwischen Host und Engine überprüfen, sollte in jedem Fall bei jeder Konfiguration aktiv gelassen

werden, auch wenn man sich zu 100% sicher ist mit dem, was man tut. Hier wird die Engine die

gesamte Logik der Konfiguration pruhfen und bei schwerwiegenden Fehlern, welche die Verbindung zu

Host trennen kohnnen, unterbinden.

Diese Konfiguration muss nun auf jedem Host (Virtualisierung und Storage) angewendet werden. Sie

ist bei wenig Aufwand schnell getan und lohnt sich in jedem Fall, da man mit Bond – Mode 2 einen

hohheren Datendurchsatz in Kombination mit Ausfallsicherheit erhahlt.

 8.7.8 Erstellung des Netzwerkes für die VM's

An dieser Stelle wollen wir das Netzwerk fuhr die virtuellen Maschinen einbinden. Wie wir uns erinnern

haben wir im vorhergehenden Schritt bereits das VMnet1 erstellt. Hier muhssen wir nur noch das

Netzwerk den Hosts bekannt geben und die Nutzung erlauben. Wir werden an dieser Stelle den beiden

Power Maschinen des Clusters Cluster-Level-High je drei Links und den beiden Fujitsu Maschinen je

einen Link entreissen. Hierfuhr nutzen wir das gleiche Vorgehen wie im letzten Abschnitt und gehen

nach der Beschreibung von Befehl 20 zur Host internen Netzwerkkonfiguration. Hier soll

ovn4.mgmtdom wieder als Referenzbeispiel fuhr seinen Partner ovn1.mgmtdom dienen. Auch hier

orientieren wir uns am Beispiel von Abbildung 54 und dropen uns die drei Links zusammen. An dieser

Stelle wahhlen wir aber Mode 4 (Dynamic Link Aggregation) als Bonding Methode aus, da wir die ja so

unter pfSense vorkonfiguriert haben. Als Namen verwenden wir hier Bond0. Dies hat keine spezielle

Bedeutung, sondern ist ein Standard Vorgehen des Autors bezuhglich Public – Links bzw. DMZ

Betitelung.

Diplomarbeit von Bogdanovic Theodor für die HFU 117

Abbildung 56: Realisierung des
Virtualisierungssegmentes: Host-Netzwerk mit Bonding
erstellen Teil 1 (VMnet1)

FullOpenSourceVirtualization

Nach Erstellung der Link Aggregation landet man wieder in der Gesamtuhbersicht, wo nun der neue

Link – Verbund bond0 sichtbar ist. Dieser nuhtzt uns im Moment nicht viel, da ihm noch kein Netzwerk

zugewiesen ist. Auf der rechten Seite des Konfigurationsmenuhs sieht man aber unter der Kategorie

Erforderlich unser erstelltes Netzwerk VMnet1. Dieses kann nun per Drag and Drop der Aggregation

zugewiesen werden und das war es schon. Mit einem Klick auf OK wird die Einstellung uhbernommen

und das Netzwerk geht uhber die Aggregation online.

Fuhr die beiden Fujitsu Maschinen entfahllt das Bilden einer Aggregation, hier kann referenziert auf

Abbildung 57 einfach das Netzwerk auf seinen Platz geschoben werden.

 8.7.8.1 Kurzer Exkurs auf diverse Erklärungen

 8.7.8.1.1 Nicht erforderliche Netzwerke

Wie wir in Abbildung 57 erkennen kohnnen, wird zwischen Erforderlichen und Nicht erforderlichen

Netzwerken differenziert. Bei der Erstellung von VMnet1 haben wir den Default Wert auf Erforderlich

belassen und somit oVirt mitgeteilt, dass das Netzwerk, wenn es einem Host zugeteilt worden ist, als

aktive Abhahngigkeit gilt. Dies bedeutet, dass oVirt vor der Migration einer VM pruhft, ob das Netzwerk

auch auf der Gegenseite verfuhgbar ist. Sollte dies nicht der Fall sein so wird die Migration abgelehnt.

Man hat also die Sicherheit, dass eine Migration vor der Ausfuhhrung stets gepruhft wird. Zusahtzlich

erlaubt oVirt auch nicht die Bildung von HA unter Nodes, welche nicht sahmtliche Erforderlichen

Netzwerke einem Interface zugewiesen haben. Bei Nicht Erforderlichen Netzwerken ist die Bildung

von HA mohglich und oVirt akzeptiert jede Konstellation. Das Migrieren einer Maschine in ein nicht

erforderliches Netzwerk wird aber dennoch untersagt. Diese Konfiguration soll die freie

Netzwerkbildung ermohglichen und oVirt dennoch die Mohglichkeit bieten zwischen mohglichen

Szenarien zu differenzieren.

 8.7.8.1.2 Netzwerk- seitiger Vergleich mit anderen Lösungen

An dieser Stelle seien alle an oVirt interessierten Nutzer gewarnt. Die unter VMware oder Xenserver

bekannte Bildung von isolierten Netzwerken, welche nicht direkt einem physischen Link unterstellt

sind ist hier nicht mohglich. Man muss jedes erstellte Netzwerk auch einem Link zuweisen, da es

ansonsten nicht genutzt werden kann und Down bleibt. Es ist zwar mohglich mehrere Netzwerke einem

Link oder einer Link Aggregation zuzuweisen. Diese kohnnen dann isoliert voneinander uhber die gleiche

Diplomarbeit von Bogdanovic Theodor für die HFU 118

Abbildung 57: Realisierung des Virtualisierungssegmentes: Host-Netzwerk mit Bonding erstellen Teil 2 (VMnet1)

FullOpenSourceVirtualization

physische Verbindung betrieben werden. Techniken wie vSwitch von VMware, virtuelle Netzwerke von

Xenserver oder die Bildung von vSwitches bei Solaris (Crossbow) sind jedoch nicht mohglich.

Distributed Switches sind bei dieser Technik des klassischen Linux bridging auch nicht mohglich.

 8.8 Abschluss des groben Teiles

Ab hier haben wir einen voll funktionsfahhigen Cirtualisierungscluster, welcher bereits produktiv

genutzt werden kohnnte. Der Betrieb wahre ab hier doch etwas umstahndlich und mit viel

Einzelkonfigurationsarbeit verbunden, da Vorlagen fehlen, Beschrahnkungen nicht gesetzt sind und

vieles mehr. Dies alles folgt im finalen Abschlussteil dieses Hauptkapitels. An dieser Stelle wird mit der

Dokumentation zu Gunsten von ersten Grobtests abgebrochen. Da die grohberen Tests, welche in

Kapitel 9 dokumentiert sind, muhssen vorgezogen werden, um bei allfahlligen Schahden innerhalb der

Testreihen ein einfacheres Recovery zu ermohglichen. So soll im Ernstfall das im nachfolgenden Kapitel

beschriebene Fine – Tuning nicht beschahdigt werden und keinen Zeitlichen Mehraufwand erzeugen.

Diplomarbeit von Bogdanovic Theodor für die HFU 119

FullOpenSourceVirtualization

 8.9 Die Finale Feinkonfiguration

Nach Abschluss der Grobtests kohnnen wir uns dem Fine – Tuning des Clusters widmen. Um den

Unberblick noch zu behalten, ist nachfolgend ein kleines Unbersichtsschema zu sehen, welches die

wichtigsten Highlights nochmals hervorhebt.

Dieser Abschnitt behandelt die extra Funktionen, welche es uns ermohglichen sollen, Ressourcen zu

begrenzen, VM's schneller aus Vorlagen auszurollen oder die Konfiguration des Semi-Automatic-HA

anzuwenden. Es werden auch kleinere Exkurse zu Definitionen enthalten sein, welche relevant fuhr

diese Arbeit sind aber auch solche, welche nicht explizit im Auftrag enthalten sind, jedoch die

Diplomarbeit von Bogdanovic Theodor für die HFU 120

Abbildung 58: Beginn mit dem Fine - Tuning: Übersichtsschema des Rohaufbaus

FullOpenSourceVirtualization

Integritaht dieser Arbeit als neutrale Installations- und Konfigurationsanleitung wahren sollten. In

diesem Abschnitt werden an dieser Stelle keine Vordefinitionen aufgelistet, es wird viel mehr nach der

Methodik „documenting-by-doing“, Schritt fuhr Schritt konfiguriert und gleichzeitig erklahrt. Die Logik

des Vorgehens ist zwar grohsstenteils von sich aus vorgegeben, jedoch ist an gewissen Stellen

mindestens die Reihenfolge variabel. Hier wird nach bestem Wissen und Gewissen des Autors

vorgegangen, wobei mohgliche Alternativwege spezifisch mit den bekannten Infoboxen aufgezeigt

werden. Beginnen wir nun mit der freien Konfiguration.

 8.9.1 Die Ressourcenbegrenzung

Als erstes werden wir die im Pflichtenheft definierten drei Ressourcenbegrenzungen _MIN, _STD und

_HIGH definieren, sodass wir spahter nicht nachruhsten muhssen. Zu diesem Zweck gehen wir folgenden

Klick – Weg:

Hier sehen wir die drei Hauptkonfigurationskategorien Speicher, Netzwerk und CPU. Unter Data –

Center kohnnen die Parameter global gesetzt werden und gelten dann auch Data – Center weit. Das

Hinzufuhgen der globalen Werte muss anschliessend manuell an diversen Orten erfolgen.

 8.9.1.1 Setzen der globalen Werte

In den nachfolgenden Unterabschnitten werden wir die drei Ressourcen Kategorien einzeln durch

konfigurieren. Wobei die Ressourcenzuteilung dabei folgenden Richtwerten entspricht:

• _MIN: Entspricht dabei stets ca. 1/3 des absoluten Maximums der Kategorie.

• _STD: Wird innerhalb dieser Arbeit als Default Wert eingestuft. Der Grund fuhr diesen tiefen

Wert als Standardwert ist die hohhere Ausnutzung an mohglichen VM's. Technisch gesehen sollte

der Standardwert niemals am Maximalwert liegen, da man vielleicht spahter noch

nachkorrigieren mohchte.

• _HIGH: Ist die absolute Obergrenze und ist per Default stets auf unbegrenzt gesetzt. Diese

Option ist fuhr VM's hohchster Prioritaht reserviert.

 8.9.1.1.1 Setzen des globalen QoS für den Speicherzugriff (Storage)

Hierfuhr klicken wir auf Speicher und anschliessend auf Neu, woraufhin sich ein kleines

Konfigurationsfenster ohffnet. In diesem Fenster kohnnen wir nun zuoberst den QoS-Namen vergeben.

Dieser soll aussagekrahftig QoS_Storage_MIN (bzw. _STD, _HIGH) lauten. Der hier vergebene Name ist

spahter nicht bei der VM Erstellung sichtbar, er muss also noch keine logischen Zuordnungen bezuhglich

Cluster beinhalten. Die Beschreibung kann frei gewahhlt werden, sollte aber mindestens einen Hinweis

auf gewisse Parameter enthalten. Hier wurden in die Beschreibungen die Prozentualwerte mit hinein

gefuhgt. Nachfolgend muhssen die Grenzwerte definiert werden. Ovirt bietet hier die Mohglichkeit, den

Durchsatz als Zahl in Mega Byte anzugeben und zusahtzlich die Input – Output Aktionen pro Sekunden.

Diplomarbeit von Bogdanovic Theodor für die HFU 121

Befehl 28: Realisierung des Virtualisierungssegmentes (Klicken): Zum Konfigurationsmenü des Netzwerks von
ovn4.mgmtdom

System (Seitenleiste) → Data-Center (Registerkarte) → QoS (untere Registerkarte)

FullOpenSourceVirtualization

Da die Berechnung der I/O pro Sekunde zu kompliziert wahre, genuhgt es, hier die Einschrahnkung als MB

– Wert unter Durchsatz anzugeben. An dieser Stelle ist es mohglich einen Gesamtwert anzugeben. Ovirt

berechnet selbststahndig die Idealwerte fuhr Lesen und Schreiben, oder man gibt diese Wert manuell ein.

Wir werden die Werte manuell eingeben und eine leichte Asymmetrie erzeugen, indem wir dem

Leseprozess etwas mehr Leistung geben. Zur Berechnung der Werte wird nachfolgende Formel

verwendet:

Maximaler Speicherzugriff: Dieser wird uhber eine 1 Gbit/s Leitung zum Storage definiert. Hier wird

statisch mit dem Maximalwert von 1 Gbit/s pro Host gerechnet, die Belastung der Leitung durch

mehrere Host – Zugriffe wird hier ignoriert.

Hieraus resultiert 1000 Mbit/s / 8 bit pro Byte = 125 MB/s

125 MB/s * 0.3 (30%) = 37.5 MB/s → Abgerundet auf 35 MB/s

Somit ist der priorisierte Lesezugriff auf 35 MB/s zu setzen und der langsamere Schreibzugriff wird

der Asymmetrie halber auf 30 MB/s gesetzt. Diese Einstellung kann nun mit OK uhbernommen

werden, woraufhin sie in der Liste erscheint.

Diese Schritte kohnnen nun fuhr die Profile _STD und _HIGH wiederholt werden, wobei natuhrlich die

Namen und Beschreibungen anzupassen sind. Die Zahlenwerte fuhr die beiden Profile sind folgende:

• _STD (60% des Maximums) → Lesen 65 MB/s, Schreiben 60 MB/s

• _HIGH (100% bzw. unbegrenzt) → Lesen NICHTS, Schreiben NICHTS

So sollte die Konfiguration schlussendlich aussehen:

Diplomarbeit von Bogdanovic Theodor für die HFU 122

Abbildung 59: Beginn mit dem Fine - Tuning: QoS - Speicher; erstellen der globalen
Profile

Abbildung 60: Beginn mit dem Fine - Tuning: QoS - Speicher; Das fertige Ergebnis

FullOpenSourceVirtualization

 8.9.1.1.2 Setzen des globalen QoS für den Netzwerkzugriff

An der gleichen Stelle kohnnen wir nun auf den Button Netzwerk und anschliessend auf Neu klicken

und wir landen wieder beim Konfigurationsmenuh. Hier kann aus einem unerfindlichen Grund nur der

Name aber keine Beschreibung angegeben werden. Wir geben hier wieder den Namen nach unserem

definierten Standard ein → QoS_Network_MIN. Hier bietet uns oVirt die Mohglichkeit, den eingehenden

wie auch den ausgehenden Datenverkehr zu manipulieren. Asymmetrische Werte sind hier vor allem

bei Webservern sinnvoll, wo der ausgehende Verkehr um einiges hohher sein muss als der eingehende.

Wir werden auch hier unsere Zerteilung in 30%, 60% und unbeschränkt anwenden, wobei hier

folgende Formal zum Zuge kommt:

Maximaldurchsatz → 1000 Mbit/s * 0.3 (30%) = 300 Mbit/s

Somit nutzen wir an dieser Stelle fuhr _MIN den Durchschnittswert 300 und multiplizieren dies mit 2

um den Peak zu erhalten. Die Verdoppelung des Spitzenwertes ist ein reiner Gefuhhlswert des Autors

und absolut akzeptabel in Kombination mit dem dritten Wert 100 MB fuhr Burst. Der Burst Wert besagt

nahmlich, dass der Peak nur fuhr die Menge von 100 MB pro auftretendem Schub zulahssig ist.

Wir wenden diese Werte fuhr den eingehenden sowie fuhr den ausgehenden Datenverkehr an, da hier

nicht speziell auf die Infrastruktur (Webserver) geachtet werden muss.

Fuhr die Profile _STD und _HIGH sehen die Parameter nach unserer prozentualen Aufteilungs- Skala wie

folgt aus:

• _STD (bei 60%) → Average = 600, Peak = 1000 (1200 geht ja nicht), Burst = 200

• _HIGH (bei 100%) → Average = NICHTS, Peak = NICHTS, Burst = NICHTS

Die fertige Konfiguration sollte so aussehen:

Diplomarbeit von Bogdanovic Theodor für die HFU 123

Abbildung 61: Beginn mit dem Fine - Tuning: QoS - Netzwerk; Erstellen der globalen Profile

Abbildung 62: Beginn mit dem Fine - Tuning: QoS - Netzwerk; Das fertige Ergebnis

FullOpenSourceVirtualization

 8.9.1.1.3 Setzen des globalen QoS für den CPU – Zugriff

Kommen wir zum letzten Abschnitt der globalen Konfiguration, der CPU Limitierung. Hier kohnnen

blanke Zahlenwerte gesetzt werden. Diese mussten zuerst mittels → Google – Anfrage ermittelt

werden, um uhberhaupt zu wissen, von welcher Art Zahlenwert die Rede ist. Es handelt sich um

Prozentangaben, welche sich stets auf die gesamte virtuelle CPU beziehen. Hier ist das Vorgehen gleich

wie unter Abbildung 59 und 61, jedoch wahhlen wir an dieser Stelle den Button CPU. Dieser ohffnet uns

nachfolgendes Fenster, wo wieder ein Name und eine Beschreibung definiert werden muhssen. Die

Beschrahnkung der CPU Nutzung wird hier auf simple Art mit einem prozentualen Zahlenwert

angegeben. In unserem Referenzbeispiel geben wir fuhr _MIN den Begrenzungswert 30 ein, womit wir

die Nutzung der virtuellen CPU (Core – Anzahl belanglos) auf 30% des verfuhgbaren Maximums

herabstufen. Fuhr _STD und _HIGH setzen wir die Werte 60 bzw. 100.

Das fertige Ergebnis sollte wie folgt aussehen:

Diplomarbeit von Bogdanovic Theodor für die HFU 124

Abbildung 63: Beginn mit dem Fine - Tuning: QoS - CPU;
Das Konfigurationsfenster

Abbildung 64: Beginn mit dem Fine - Tuning: QoS - CPU; Das fertige Ergebnis

FullOpenSourceVirtualization

 8.9.1.2 Verteilen der globalen QoS Profile

Leider ist die Verteilung der Profile nicht so luxuriohs gelohst wie bei VMware. Hier muhssen die Profile

noch manuell in den drei Destinationen eingebunden werden. Hierzu muhssen wir zu den

Registerkarten Cluster, Netzwerk und Speicher gehen, wo die Einbindepunkte teilweise etwas

versteckt liegen.

 8.9.1.2.1 Einbinden des QoS – Profils für die CPU – Limitierung

Um zum Einbindepunkt zu gelangen nutzen wir folgenden Klick – Weg:

Dort treffen wir auf eine Liste mit einem bestehenden Eintrag und dem bekannten Button Neu,

welchen wir nun anklicken. Im sich nun ohffnenden Konfigurationsmenuh haben wir die Mohglichkeit

einen Namen und eine Beschreibung zu setzen. Der dritte Parameter mit dem Namen QoS ist eine

Auswahlliste, in welcher die im letzten Abschnitt erstellten QoS Profile aufgefuhhrt sind. Nun vergeben

wir als erstes einen sinnvollen Namen, welcher eine klare Referenz zu unserem Ressourcen –

Zuleitungsschema hat wie bspw. QoS_CPU_MIN. Die Namensuhberlappung an dieser Stelle ist nicht

gewollt, ergibt sich aber als einzige logische Variante. In der Beschreibung geben wir an, dass es sich

um einen Link zum QoS Profil handelt. In der Auswahlliste suchen wir das QoS Profil, welches unseren

Verweis auf _MIN besitzt. Das war es schon! Mit einem Klick auf OK werden die Einstellungen

uhbernommen. Dies wiederholen wir nun auch fuhr die Einstellungen _STD und _HIGH, wobei wir hier

natuhrlich die entsprechenden Profile auswahhlen.

An dieser Stelle haben wir nun die drei QoS Profile fuhr Cluster-Level-High an drei Auswahlparameter

gebunden, welche wir spahter bei der VM – Erstellung nutzen kohnnen. Diese drei Schritte kohnnen nun

ahquivalent fuhr Cluster-Level-Middle angewendet werden. Das fertige Ergebnis sollte nun wie folgt

aussehen:

Diplomarbeit von Bogdanovic Theodor für die HFU 125

Befehl 29: Realisierung des Virtualisierungssegmentes (Klicken): Beginn mit dem Fine - Tuning: QoS - CPU; der Weg
zum Konfigurationspunkt des Einbindens.

System (Seitenleiste) → Cluster (Registerkarte) → Cluster-Level-High (in der Auswahlliste) CPU-Pro�le

(untere Registerkarte)

Abbildung 65: Beginn mit dem Fine - Tuning: QoS - CPU; Einbinden des
CPU - QoS Profiles für Cluster-Level-High _MIN

FullOpenSourceVirtualization

Wie in den beiden Abbildungen oben zu erkennen ist, gibt es jeweils zuoberst eine Einstellung mit dem

Flag Unbegrenzt. Hierbei handelt es sich um die Default Konfiguration, welche von der Engine bei der

Installation angelegt wird. Sie wird so stehen gelassen, da sie nicht stohrt und die Auswirkungen bei

oVirt, was das Lohschen von Systemeinstellungen angeht, etwas heikel sein kann.

 8.9.1.2.2 Einbindung des QoS – Profils für die Netzwerklimitierung

Die Einbindung der Netzwerkbeschrahnkungen ist vom Vorgehen her fast gleich wie im

vorhergegangenen Abschnitt. Hier gehen wir wie nachfolgend beschrieben zum

Netzwerkkonfigurations- Tab:

Auch hier sehen wir den System – Standarteintrag und den altbekannten Button Neu. Mittels Klick auf

Neu ohffnet sich ein Konfigurationsmenuh. Als erstes sehen wir den Namen. Hier wahhlen wir

VMnet1_MIN als sinnvollen Namen. Die Beschreibung soll uns auch an dieser Stelle einen Verweis auf

das QoS Profil geben. Wie im oberen Abschnitt beschrieben, kohnnen wir auch hier aus der Auswahlliste

das zu referenzierende QoS Profil mit der Endung _MIN auswahhlen. Zusahtzlich steht hier noch die

Option Port-Mirroing zur Auswahl, welche zu Debugging – Zwecken aktiviert werden kann, falls man

Traffic mitschneiden mohchte. Die anschliessende Auswahlliste bietet eine Option, bei der es sich um

das Bilden von SecurityGroups dreht. Diese Option wird hier nicht genutzt und soll auch nicht weiter

Diplomarbeit von Bogdanovic Theodor für die HFU 126

Abbildung 66: Beginn mit dem Fine - Tuning: QoS - CPU;
Einbinden des CPU - QoS Prfiles; das fertige Ergebnis für Cluster-
Level-High

Abbildung 67: Beginn mit dem Fine - Tuning: QoS - CPU;
Einbinden des CPU - QoS Prfiles; das fertige Ergebnis für Cluster-
Level-Middle

Befehl 30: Realisierung des Virtualisierungssegmentes (Klicken): Beginn mit dem Fine - Tuning: QoS - Netzwerk; der
Weg zum Konfigurationspunkt des Einbindens.

System (Seitenleiste) → Netzwerk (Registerkarte) → vNIC-Pro�le (untere Registerkarte)

FullOpenSourceVirtualization

thematisiert werden. Am Ende des Konfigurationsmenuhs kann man noch angeben, ob die neu erstellte

Limitierung allen Benutzern zugahnglich gemacht werden soll. Dies macht beim spahteren Hinzufuhgen

von weiteren Benutzern auch Sinn und sollte aktiv gelassen werden.

Diese Konfigurationen wiederholen wir nun fuhr die restlichen beiden Limitierungen _STD und _HIGH.

Da die allgemeine Netzwerkkonfiguration Data – Center- weit guhltig ist, sind somit auch alle unsere

Einstellungen entsprechend gleich weit guhltig, womit eine Cluster – Separierung an dieser Stelle

wegfahllt.

Das fertige Ergebnis sollte in etwa wie folgt aussehen:

 8.9.1.2.3 Einbindung des QoS – Profils für die Storagelimitierung

Die Einbindung der Storagelimitierungen folgt dem gleichen Muster wie bisher und spielt sich unter

folgendem Punkt ab:

Diplomarbeit von Bogdanovic Theodor für die HFU 127

Abbildung 68: Beginn mit dem Fine - Tuning: QoS - Netzwerk;
Einbinden des Netzwerks - QoS Profils für das Netzwerk (Data - Center
weit)

Befehl 31: Realisierung des Virtualisierungssegmentes (Klicken): Beginn mit dem Fine - Tuning: QoS - Speicher; der
Weg zum Konfigurationspunkt des Einbindens.

System (Seitenleiste) → Speicher (Registerkarte) → Storage-R1 (Storage Name) → Disk-Pro�le

Abbildung 69: Beginn mit dem Fine - Tuning: QoS - Netzwerk; Einbinden des Netzwerk - QoS Prfiles; das fertige
Ergebnis

FullOpenSourceVirtualization

An dieser Stelle werden wir nur den Master Storage „Storage-R1“ konfigurieren, da eine Limitierung

der ISO Speicher allgemein mehr als sinnlos wahre. Auch an dieser Stelle gehen wir auf Neu und treffen

das altbekannte Konfigurationsmenuh wieder vor. Hier ist der zu konfigurierenden Aufwand wieder

geringer und es genuhgen Name, Beschreibung und die korrekte Wahl aus der Auswahlliste. Als Namen

vergeben wir hier wieder einen aussagekrahftigen, welcher uns auch gleich auf den Storage selbst

verweist, in diesem Fall Storage-R1_MIN. Die Beschreibung ist wieder ein Link – Verweis auf die

eigentlichen QoS Profile und die korrekte Wahl aus der Auswahlliste ist wieder der Eintrag, welcher

die Begrenzung im Namen trahgt, also _MIN. Auch hier wiederholen wir alle Schritte, um die noch

offenen Limitierungen fuhr _STD und _HIGH zu erzeugen.

Wenn wir alles richtig gemacht haben, sollte das Schlussergebnis wie in nachfolgender Abbildung

aussehen:

Dies war auch schon die komplette Ressourcen – Konfiguration. Sie ist wie bereits erwahhnt nicht so

komfortabel wie bei VMware, aber sie erfuhllte ihren funktionalen Zweck vollkommen. Ab diesem Punkt

haben wir einen fertigen Virtualisierungscluster, welcher nicht verschwenderisch mit seinen

Ressourcen umgeht und uns so eine effizientere und hohhere Anzahl an virtuellen Maschinen

ermohglicht.

Diplomarbeit von Bogdanovic Theodor für die HFU 128

Abbildung 70: Beginn mit dem Fine - Tuning: QoS - Storage; Einbinden des
Netzwerks - QoS Profils für den Storage Storage-R1 - Master (Data - Center
weit)

Abbildung 71: Beginn mit dem Fine - Tuning: QoS - Storage; Einbinden des Storage -
QoS Prfiles; das fertige Ergebnis

FullOpenSourceVirtualization

 8.9.2 Die erste VM

Da wir nun einen voll funktionsfahhigen Cluster mit der Mohglichkeit der Ressourcenbegrenzung haben,

wird es Zeit, die erste produktive virtuelle Maschine einzurichten. Hierfuhr nehmen wir ein openSUSE,

welches zugleich eine wichtige Komponente im VM – Netzwerksegment erfuhllen soll, nahmlich der

DHCP / DNS Server. Dazu geben wir nachfolgenden Befehl auf gfsn1.mgmtdom ein, um den

ISO_STORE als NFS Mountpoint lokal ins /mnt einzubinden. Dort kohnnen wir anschliessend per

Kommandozeilenbefehl wget das ISO – File von opensuse.org holen.

Wenn das ISO auf dem Storage ist, kohnnen wir uns zu einem VM – Erstellungspunkt begeben. Hierfuhr

stehen uns mehrere Wege zur Verfuhgung, wobei in jedem Fall das gleiche Konfigurationsmenuh geohffnet

wird. Wir nehmen den einfachsten Weg und machen alles uhber die globale Ansicht, welche wir auf mit

folgender Klick – Kombination erreichen:

Am oberen Rand der Listenansicht sehen wir den Button Neue VM welchen wir nun anklicken. Beim

sich ohffnenden Konfigurationsassistenten sehen wir neben den bekannten Parametern auch die

mohglichen Konfigurationskategorien, welche an dieser Stelle aber auf zwei beschrahnkt sind. Technisch

gesehen wuhrden diese beiden Kategorien fuhr den Normalbetrieb auch ausreichen, da der Grossteil aus

fix vordefinierten Default – Parametern besteht. Wir nehmen uns aber die Zeit und konfigurieren diese

Maschine mit einigen Extraoptionen, weswegen wir im Konfigurationsassistent zu unterst den Button

Erweiterte Optionen anzeigen wahhlen. Nun sehen wir die acht zusahtzlichen Parameter, welche wir

nachfolgend Schritt fuhr Schritt durchgehen werden.

 8.9.2.1 Die einzelnen Konfigurationsschritte der VM – Erstellung

In den nachfolgenden Unterkapiteln werden wir die wichtigsten Parameter durcharbeiten, welche fuhr

die Realisierung dieser Arbeit notwendig sind. Einige Punkte, welche nicht zwingend notwendig sind

werden an dieser Stelle nur leicht tangiert. Sie werden nicht ausfuhhrlich thematisiert, da dies sonst den

Rahmen dieses Kapitels sprengen wuhrde.

 8.9.2.1.1 Kategorie → Allgemein

In dieser Kategorie sehen wir einen hellgrau markierten Bereich, welcher fuhr die Primahr –

Konfiguration gedacht ist, welche sich nie verahndert und bei jedem Kategoriewechsel stets die gleichen

Informationen enthahlt. Dieser Bereich wird fuhr die nachfolgende Dokumentation der Schritte mit

Basiskonfiguration betitelt. Dabei enthahlt dieser Bereich folgende Konfigurationspunkte:

Diplomarbeit von Bogdanovic Theodor für die HFU 129

Befehl 32: Realisierung des Virtualisierungssegmentes (Klicken): Herunterladen des openSUSE ISO's

mount.nfs -o mountproto=tcp gfsn1.mgmtdom:/ISO_STORE /mnt

Befehl 33: Realisierung des Virtualisierungssegmentes (Klicken): Herunterladen des openSUSE ISO's

System (Seitenleiste) → Virtuelle Maschine (Registerkarte)

FullOpenSourceVirtualization

• Cluster: Hier kann der zu nutzende Cluster angegeben werden. Wir werden unsern DHCP /

DNS Server, an dieser Stelle nur noch als Infraserv1 bezeichnet, in den Cluster-Level-Middle

platzieren.

• Basierend auf Vorlage: Hier kohnnen bereits erstellte VM's, welche als Vorlage definiert

worden sind, angegeben werden. Momentan haben wir ja aber keine Vorlage, deshalb belassen

wir dieses Feld auf Blank.

• Vorlage-Subversion: Es besteht bei oVirt die Mohglichkeit aus VM's welche als Vorlage dienen

auch Subversionen zu generieren, welche Abweichungen zur urspruhnglichen Version besitzen.

Bei dieser Arbeit wird auf dieses Feature verzichtet.

• Betriebssystem: Hier kann die OS Variante angegeben werden, wobei auch noch eine

Unterteilung in die unterschiedlichen Versionen mohglich ist. Diese Option konfiguriert die

darunterliegenden XML – Files, welche KVM als Konfigurationsparameter nutzt, entsprechend

den Beduhrfnissen des OS, also bspw. mehr CPU – Befehlssahtze oder die Vordefinition fuhr die

Nutzung der KVM eigenen Libvirt – Libraries zur teilweisen Paravirtualisierung. Da unsere

openSUSE 42.1 Version nicht in der Liste anzutreffen ist, nutzen wir einfach die Option Linux.

Dies ist kein Problem, da heute die meisten Distributionen praktisch identisch sind.

• Instanztyp: Mohchte man sich nicht selbst die Muhhe machen und Leistungsparameter wie CPU

(Core – Anzahl) oder RAM definieren, so kann man hier unter fuhnf Leistungsstufen (Small –

XLarge) wahhlen. XLarge ist hier die hohchste Stufe und verwendet 4 CPU's bei ca. 16 GB RAM.

Wir werden hier Benutzerdefiniert wahhlen und unsere Parameter nachfolgend selbst

definieren.

• Optimiert für: Hier kann zwischen Server und Desktop gewahhlt werden. Die beiden Parameter

definieren, wie die restliche Konfiguration bezuhglich grafischem Subsystem aussehen soll. Im

Falle der Wahl Desktop, wird der SPICE Server auf dem Host so konfiguriert, dass die maximale

grafische Performance zur Verfuhgung steht. Bei unserem openSUSE werden wir zwar ein

minimales X11 nutzen, jedoch ist hier der Parameter Server die ideale Wahl.

Dies war das Ende der Basiskonfiguration, welche sich nun bei jedem Kategoriewechsel nicht mehr

ahndern wird und auch in den nachfolgenden Schritten nicht mehr thematisiert wird.

• Name: Hier kann ein VM – Name vergeben werden, in unserem Fall wird folgende

Namenskonvention definiert und kontinuierlich fuhr alle VM's als Design – Vorlage genutzt.

◦ DYN_HIGH_InfraServ1

▪ DYN: Sagt aus, dass die VM Live migriert werden darf.

▪ _HIGH: Definiert die im vorgahngigen Schritt konfigurierte Ressourcen – Limitierung.

▪ _<NAME>: An dieser Stelle steht der eigentliche Name der VM. Hier gibt es die

Mohglichkeit der Namensraumerweiterung, welche spahter mit einem Bindestrich

definiert wir.

• Beschreibung und Kommentar: Die Begrifflichkeiten sind an dieser Stelle selbsterklahrend.

Diplomarbeit von Bogdanovic Theodor für die HFU 130

FullOpenSourceVirtualization

• Die möglichen Zustandsoptionen:

◦ Zustanslos: Hier konnte keine aktuelle Dokumentation seitens oVirt geliefert werden, da

die meisten → Google – Anfragen zwar Ergebnisse lieferten, diese jedoch in einem „Not

found :(“ auf dem oVirt Webserver landeten. Zwar zeigt oVirt den Status Stateless im Icon

der VM an, jedoch haben diverse Versuche gezeigt, dass dies weder Einfluss auf Migration,

Vorlagenerstellung oder den regulahren Betrieb hat. Es kann somit nicht eindeutig

identifiziert werden, ob diese Funktion uhberhaupt noch in Betrieb ist oder einfach nur ein

Unberbleibsel einer ahlteren Version.

◦ Im Pausenmodus starten: Der Sinn dieser Funktion entzieht sich vollkommen dem

Verstahndnis des Autors. Hier wird die VM beim starten automatisch in einen Pausenmodus

versetzt, aus welchem sie mit einem erneuten Startversuch befreit werden kann. Dies

macht weder aus Ressourcen- noch aus Debugging – Gruhnden Sinn. Der genaue Nutzen

dieser Funktion ist nicht exakt ersichtlich.

◦ Löschschutz: Der Einsatz dieses Parameters ist stets zu empfehlen, wenn mehrere

Administratoren am System arbeiten. Denn solange jeder Admin einen eigenen Account

hat, kann kein anderer (auch Admin) diese VM ohne Einwilligung des Besitzers lohschen.

• Virtueller Netzwerkadapter: An dieser Stelle kann aus einer Auswahlliste der erste NIC an

ein Netzwerk gebunden werden. Hier genuhgt vorlahufig ein NIC, welcher an das „limitierte“ QoS

– Netzwerk VMnet1_HIGH gebunden und mit dem „+“ - Button hinzugefuhgt werden kann.

Diplomarbeit von Bogdanovic Theodor für die HFU 131

Abbildung 72: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Allgemein – Beispiel
InfraServ1

FullOpenSourceVirtualization

 8.9.2.1.2 Kategorie → System

In dieser Konfigurationskategorie kohnnen die elementarsten und der Hardware nahestehendsten

Einstellungen vollzogen werden, welche die Art der CPU und die Menge an RAM definieren.

• Arbeitsspeichergrösse: Hier kann die Grohsse des Arbeitsspeichers angegeben werden, was

wir auch gleich mit 1024 MB RAM fuhr unseren InfraServ1 tun. Da wir bei der Erstellung der

Cluster gesagt haben, dass wir keine RAM Unberschreitung zulassen wollen, kohnnen hier auch

nicht mehr RAM pro VM vergeben werden als der Host im allgemeinen zur Verfuhgung hat. Zwar

akzeptiert oVirt eine massive Unberschreitung der Eingabe, jedoch lahsst sich die VM so nicht

starten.

• Virtuelle CPU's insgesamt: Hier kan die Anzahl an CPU defniert werden, welche der VM

zugeteilt werden sollen.

• Erweiterte Parameter: Hier kohnnen Parameter gesetzt werden, die das Layout des Prozessors

welcher zur VM gereicht wird, modifizieren. Dabei stehen folgende beiden Optionen zur

auswahl:

◦ Kerne pro virtuellem Socket: Die Anzahl Kerne je Socket welche der VM sichtbar gemacht

werden. Hier wird nicht wie bei anderen Lohsungen Simultaneous Multithreading

angeboten, sondern es wird nur der virtuelle Kern dargeboten.

◦ Virtuelle Sockets: Gibt die Anzahl an virtualisierten „realen“ CPU – Steckplahtzen an.

Somit kann man angeben, wie viele Prozessorsockets das virtuelle System haben soll und wie

viele Kerne je Socket (CPU) vorhanden sein sollen. Hier Simultaneous Multithreading (SMT)

anzubieten wahre nur eine sinnlose Verschwendung von Ressourcen, da sie der Hypervisor nur

muhhsam virtualisieren muhsste. Die Anzahl an virtuellen CPU's gibt die Vorgabe, nach welcher

oVirt bei diesen beiden Erweiterungsparametern automatisch alle mohglichen Lohsungen

berechnet.

• Die restlichen Optionen sind von geringer Bedeutung und werden hier nicht weiter

thematisiert.

InfraServ1 soll hier etwas stahrker dimensioniert werden, da die Mohglichkeit besteht neben der

Hauptfunktion als DHCP / DNS Server auch andere Rollen zu einem spahteren Zeitpunkt zu

uhbernehmen.

Diplomarbeit von Bogdanovic Theodor für die HFU 132

FullOpenSourceVirtualization

Die fertige Konfiguration dieser Kategorie kohnnte wie folgt aussehen:

 8.9.2.1.3 Kategorie → Erste Ausführung

Diese Kategorie soll nicht spezifisch thematisiert werden, da es hier um die Optionen geht welche eine

Vordefinition von Parametern wie Benutzername, Passwort oder SSH Schluhssel, ermohglichen sollen.

Dies widerspricht der Grundeinstellung des Autors und ist primahr fuhr den Einsatz bei externen

Providern wie OpenStack gedacht, was ebenfalls nicht den Vorstellungen des Autors entspricht. Somit

kann die einzige Auswahloption an dieser Stelle deaktiviert bleiben.

 8.9.2.1.4 Kategorie Konsole

An dieser Stelle kohnnen diverse Parameter bezuhglich der visuellen Darstellung der SPICE – Verbindung

definiert werden. Dabei kann zwischen dem weit moderneren SPICE – Protokoll, welches auch Audio-

und USB – Support anbietet und dem veralteten VNC – Protokoll gewahhlt werden. Hier empfiehlt sich

auf jeden Fall die SPICE – Nutzung. Der Punkt USB – Unterstuhtzung kann auf „Systemeigen“ belassen

werden, um spahter von einem SPICE – Client aus einem eingesteckten USB – Flashdrive weiterreichen

zu kohnnen. Doch an dieser Stelle muss gesagt werden, dass diese Funktion nur mit Fedora 23 und

somit mit der aktuellsten SPICE – Version einwandfrei funktioniert.

Diplomarbeit von Bogdanovic Theodor für die HFU 133

Abbildung 73: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie
System – Beispiel InfraServ1

ACHTUNG!

Für den Windows SPICE – Client kann die USB – Unterstützung nachinstalliert werden. Die Installa on

des Treibers bildet eine Abstrak onsschicht, welche USB – Flashdrives abfangen soll um sie zum

Hypervisor zu leiten. Die So8ware ist veraltet und scheint trotz Support nicht sauber zu funk onieren.

Im schlimmsten Fall funk oniert danach keine USB – Schni<stelle mehr.

FullOpenSourceVirtualization

Beim nahchsten Punkt zeigt sich die Performance von SPICE, denn es ist mohglich, bis zu vier Monitore

auf der VM zu virtualisieren.

Der Punkt Single-Sign-On-Methode definiert ob ein Konsolen – Login uhberhaupt mohglich sein soll und

falls ja, wie denn die Parameter dazu aussehen. Die Auswahloption in der Basiskonfiguration, ob es

sich um eine Server- oder Desktop – Maschine handelt, definieren hier die Parameter automatisch. Bei

einer Server Konfiguration werden hier nur die nohtigsten Parameter wie VirtIO – Konsolengeraht und

SPICE – Zwischenablage aktiviert. Beim Desktop sind alle Parameter automatisch gesetzt um

Funktionen wie Soundkarten – Weiterleitung zu ermohglichen. Unter dem Menuhpunkt Erweiterte

Parameter ist noch der Parameter Strenge Benutzerkontrolle deaktivieren per Default aktiv. Es

wird seitens oVirt mit einer Warnmeldung darauf hingewiesen, diesen Parameter nicht zu verahndern.

Entsprechende Versuche haben keinerlei unterschiedliches Verhalten beim Anndern dieses Parameters

gezeigt.

 8.9.2.1.5 Kategorie → Host

Hier kohnnen die Position der VM bezuhglich Host sowie die Migrationsrichtlinien definiert werden.

Mittels Ausführung starten auf kann statisch ein Host innerhalb eines Clusters fuhr den allgemeinen

Start der VM definiert werden. Dies betrifft aber nur die Startsequenz, spahteres automatisches

Migrieren ist mit Funktionen wie Affinitätsgruppen weiterhin erlaubt. Es empfiehlt sich hier die Wahl

oVirt selbst zu uhberlassen, da es selbst am besten beurteilen kann, wo der optimale Platz fuhr diese

Maschine im Produktivbetrieb ist. Der Punkt Migrationsoptionen definiert, ob diese Maschine

uhberhaupt migriert werden kann und falls ja, unter welchen Umstahnden. Man kann hier zwischen nur

manueller Migration und der kombinierten Migration, manuell und automatisch, wahhlen. Soll diese VM

spahter HA unterstuhtzen, so muss hier zwingend Manuelle und automatische Migration erlauben

Diplomarbeit von Bogdanovic Theodor für die HFU 134

Abbildung 74: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Konsole –
Beispiel InfraServ1

FullOpenSourceVirtualization

gewahhlt werden. Es besteht auch noch die Mohglichkeit, die Migrationsausfallzeit manuell einzutragen.

Bei oVirt ist dies per Default deaktiviert und die Engine bestimmt diese selbststahndig. Die regulahre

Ausfallzeit betrahgt bei KVM ca. 30 Millisekunden und muss auch von oVirt so uhbernommen werden.

Falls man hier eingreifen will, so sollte man wissen, dass eine zu tiefe Zeit zu einem Migrationsabbruch

im Fehlerfall fuhhren kann, was wiederum zum Absturz der VM fuhhrt. Eine zu hohe Zeit macht bei

ausgelasteten Systemen zwar auf den ersten Blick Sinn. Man muss jedoch bedenken, dass das

installierte OS nicht virtuell ist. Zu langen Unterbruchszeiten kohnnen mohglicherweise

Startschwierigkeiten auf dem neuen Host verursachen, was ebenfalls zu einem Systemabsturz fuhhren

kann.

Die ganze NUMA – Thematik, wo es um das Fixieren von zusammengehohrigen RAM Bausteinen zu

einem CPU – Core geht, mag zwar die Fahhigkeit besitzen, eine VM massiv zu beschleunigen, jedoch

verunmohglicht sie die Migration der VM im Allgemeinen. Da dieser Punkt fuhr sich selbst den Rahmen

dieses Abschnittes und auch des ganzen Kapitels sprengen wuhrde, wird hier auf eine weitere

Vertiefung verzichtet.

Diplomarbeit von Bogdanovic Theodor für die HFU 135

Abbildung 75: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Host – Beispiel InfraServ1

FullOpenSourceVirtualization

 8.9.2.1.6 Kategorie → Hoch verfügbar

Hier kann definiert werden, ob eine VM das Anrecht besitzt, die Systemressource HA uhberhaupt zu

nutzen oder ob sie im Notfall einfach fallen gelassen wird. Dazu genuhgt technisch gesehen nur das

Aktivieren des Feldes Hoch Verfügbar. Es ist auch mohglich zu definieren, mit welcher Prioritaht die

Migration im allgemeinen aber auch die Migration im Notfall vollzogen werden soll. Hierfuhr stehen die

drei Auswahlkriterien Niedrig, Mittel und Hoch zur Verfuhgung. Dies war auch schon die gesamte

Konfiguration des HA fuhr unsere VM InfraServ1.

Ovirt bietet auch an dieser Stelle die Mohglichkeit, die VM selbst zu uhberwachen. Dazu muss lediglich in

der Auswahlliste Watchdog-Modell unter der Parameterkategorie Watchdog ein verfuhgbares Modell

ausgewahhlt werden. Unter Watchdog-Aktion kann die auszufuhhrende Aktion Zurücksetzten,

Ausschalten, dump oder pausieren, gewahhlt werden. Ist diese Option aktiv, so versucht der Host,

welcher die Maschine gestartet hat, mit gelegentlichen Keepalive – Tests auf vorhandenen Traffic

seitens CPU, RAM, Disk oder Netzwerk zu pruhfen. Antwortet die VM nicht, aber der Zustand des

Hypervisors ist als OK eingestuft, weiss er, dass etwas mit der VM nicht in Ordnung ist und fuhhrt eine

der definierten Aktionen aus. Auf diese Funktion wird aber an dieser Stelle zwecks einer anderen

Lohsung, welche nachfolgend beschrieben wird, verzichtet.

Diplomarbeit von Bogdanovic Theodor für die HFU 136

Abbildung 76: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Hoch verfügbar –
Beispiel InfraServ1

FullOpenSourceVirtualization

 8.9.2.1.7 Unterbruch zwecks eines kurzen Exkurses bezüglich Semi-Automatic-HA

Wie bereits erwahhnt, ist die Realisierung des nativen HA mit der gegebenen Hardware nicht umsetzbar.

Weswegen die Alternativlohsung Semi-Automatic-HA defniert und entsprechend als Annderung im

Betreuungsprotokoll 3 schriftlich festgehalten wurde. Diese Lohsung sieht vor, dass ein Zabbix – Server

alle VM's im Cluster uhberwacht. Auf diese Art und Weise kann erstens der Ausfall einer VM

unverzuhglich ermittelt werden, was die Nutzung des Watchdog uhberfluhssig macht, und zweitens kann

bei einem grossflahchigen Ausfall davon ausgegangen werden, dass ein kompletter Node offline

gegangen ist. Im Falle eines Node Ausfalles kann dann manuell eingegriffen werden, indem der

sichtbar als non-responsible klassifizierte Node uhber das Kontextmenü → Manuelles Fencing als

tot klassifiziert wird und der Cluster mit der Migration beginnt. Hier muss aber klar gesagt werden,

dass die Konfigurationsparameter unter der Cluster – Konfiguration → Fencing-Richlinien nicht mehr

guhltig sind. Hat man also definiert, dass kein Fencing beim Ausfall von 50% des Clusters stattfinden

soll, so wird dies ignoriert und die Engine versucht alles, was von der Prioritaht her mohglich ist, auf die

restlichen Maschinen desselben Clusters zu verteilen. Dies ist zwar keine Ideallohsung, aber die

technisch einzige ohne massive Investitionen in die vorhandene Hardware. Sie muss somit als

akzeptable Lohsung uhbernommen werden.

An dieser Stelle muss klar erwahhnt werden, dass die Realisation und Dokumentation hier nicht

stattfinden wird, sondern dies eine rein theoretische Definition einer mohglichen Umsetzungsvariante

darstellt.

Wie kohnnte aber eine mohgliche Umsetzung aussehen? Ideal wahre eine externe Hardware, welche selbst

nicht unter einem mohglichen Node – Ausfall leiden wuhrde. Eine mohgliche und auch zugleich guhnstige

Variante wahre der Einsatz eines Raspberry Pi 2 als Zabbix – Server. Dies ist technisch realisierbar und

sollte von der Leistung vom Modell 2 her gesehen auch realistisch umsetzbar sein. Das Raspberry

wuhrde einen eigenen Netzwerkanschluss innerhalb des Virtualisierungsteils bekommen, wofuhr die

pfSense Bridge um einen Port erweitert werden muhsste. Auf jedem Client innerhalb des Clusters wuhrde

stets ein Zabbix – Client mitinstalliert, welcher fuhr die Realisation dieses Projektes lediglich die Zabbix

Ping Funktion (Zabbix Alive) nutzen muhsste. Fahllt eine VM oder ein Verbund an VM's innerhalb eines

Nodes aus, so wuhrde dies der Zabbix – Server registrieren und eine E – Mail an eine vordefinierte

Adresse mit der Trigger – Meldung des betroffenen Items verschicken. Somit ist das sofortige

Eingreifen des Administrators in jedem Fall gewahhrleistet und die Ausfallzeit lediglich um ein kleines

Minimum grohsser als es bei nativem HA der Fall wahre.

Eine absolut perfekte Alternativlohsung wahre, den Zabbix – Server nicht eine Nachricht absetzen zu

lassen, sondern gleich ein internes Skript auszufuhhren, welches die RESTful API der Engine anspricht

und somit das Fencing manuell auslohst. Hierfuhr wahre aber eine Menge an Konfiguration- und

Entwicklungsaufwand notwendig.

Zur besseren Verdeutlichung des Beschriebenen sollen die beiden nachfolgenden Abbildungen das

Szenario mittels zwei Ablahufen grafisch darstellen.

Diplomarbeit von Bogdanovic Theodor für die HFU 137

FullOpenSourceVirtualization

Fehler wurde durch Zabbix – Server erkannt und gemeldet. Anschliessend wurde das manuelle Fancing

durch den Admin gepusht. Die VM's wurden migriert und die Fehlersuche auf Node 4 kann beginnen.

Diplomarbeit von Bogdanovic Theodor für die HFU 138

Abbildung 77: Kurzer Exkurs nach Kapitel 8.9.2.1.7 - Semi-Automatic-HA Teil1

Abbildung 78: Kurzer Exkurs nach Kapitel 8.9.2.1.7 - Semi-Automatic-HA Teil2

FullOpenSourceVirtualization

 8.9.2.1.8 Kategorie → Ressourcenzuteilung

An dieser Stelle kohnnen die QoS – Limitierungen die wir erzeugt haben, gesetzt werden. Hierzu nutzen

wir die Auswahlliste CPU-Profil und suchen uns das Profil mit dem Flag _HIGH im Namen aus. Es

macht Sinn, diese hohe Prioritaht einem Infrastruktur – Server zu vergeben, da er permanent auf

Broadcast – Nachrichten horchen muss und somit eine zu tiefe Prioritaht zum Unberspringen der

ankommenden Anfrage fuhhren kann.

Die Auswahlliste namens CPU-Anteile definiert die mohglichen Anteile pro Zeiteinheit die der virtuelle

Prozessor pro Zyklus nutzen darf. Ein Prozessor kann auf einen prozentualen Anteil an zu nutzendem

Maximum begrenzt werden. Es ist jedoch auch mohglich, die Anteile an Recheneinheiten, die er in

diesem Zeitraum nutzt, zu reduzieren, um auf diese Weise noch mehr VM's auf ein System zu bringen.

Hier wird darauf verzichtet, da der Cluster nicht an seine thermische Obergrenze bezuhglich Abluft

gebracht werden soll.

Bei der Arbeitsspeicherzuteilung kann, sofern das Kahstchen darunter (Memory-Balloon-Geraht

aktiviert) aktiviert ist, ein tieferer Wert als der zugeteilte maximal RAM gesetzt werden. Unterstuhtzt

der Host ebenfalls das Ballooning, so kann der Hypervisor der Maschine RAM abzweigen um ihn einer

anderen Maschine zuzuteilen. Das definierte Minimum wird dem Host aber auf jeden Fall garantiert.

Der Parameter Disk-Zuteilung sollte auf jeden Fall aktiv sein, da so ein paravirtualisierter Zugriff auf

die virtualisierte Festplatte seitens der VM mohglich ist und somit die Durchsatzrate erheblich steigt.

Die Libvirt Treiber gibt es mittlerweile fuhr eine Vielzahl an Betriebssystemen, einschliesslich Windows

bis zur momentan aktuellsten Version.

Diplomarbeit von Bogdanovic Theodor für die HFU 139

Abbildung 79: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie
Ressourcenzuteilung – Beispiel InfraServ1

FullOpenSourceVirtualization

 8.9.2.1.9 Kategorie → Bootoptionen

Unter den Bootoptionen kann die Boot – Reihenfolge auf zwei Devices begrenzt eingestellt werden.

Dabei folgt der Autor der Praxis, stets als erstes Device das CD – ROM Laufwerk zu setzen und erst

anschliessend die eigentliche Festplatte. Auf diese Weise kann das Optionskahstchen Bootmenü

aktivieren deaktiviert bleiben. Somit hat man ein System, das stets von CD bootet und das ist bei der

ersten Ausfuhhrung ja auch so gewollt. Denn unter CD zuordnen kann man nun das ISO – Image des

openSUSE Netinstall auswahhlen und kann spahter das Optionskahstchen einfach wieder deaktivieren,

wodurch die CD – Ausfuhhrung beim booten unterbunden wird.

Die Mohglichkeit des Kernel – Booting aus einem konstanten Pfad heraus fuhr alle Maschinen (Linux-

Bootoptionen) soll hier nicht thematisiert werden, da der Autor niemals ein Freund dieser Methode

war und auch nicht vor hat sie fuhr diese Arbeit zu nutzen.

 8.9.2.1.10 Kategorie → Zufallsgenerator

Wie wir uns erinnern, haben wir den Zufallsgenerator innerhalb der Cluster deaktiviert, um nicht

unnohtig allen VM's diesen zur Verfuhgung zu stellen. An dieser Stelle kohnnen wir dies fuhr einzelne VM's

aber nachholen, falls es die Infrastruktur erfordert. Technisch gesehen muhssten wir einen

Berechnungszeitraum in Millisekunden und die Bytes pro Zeitraum definieren. Dies kann man sich

aber sparen, da Libvirt alternativ seinen eigenen Standardwert bei einer Leereingabe verwendet. Diese

sind absolut akzeptabel und die Berechnung fuhr jeden Einzelfall wahre auch zu umstahndlich. Die

Weiterleitung der Random – Werte des Host Devices /dev/random ist besonders bei der Verwendung

Diplomarbeit von Bogdanovic Theodor für die HFU 140

Abbildung 80: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Bootoptionen – Beispiel
InfraServ1

FullOpenSourceVirtualization

von Verschluhsslungssystemen auf Webservern zu empfehlen, da viele Pruhfseiten wie bspw. ssllabs.com

eine zu lange Latenzzeit als schlechte Key Exchange – Werte klassifizieren. Diese hohe Latenz entsteht,

wenn die VM ohne Hilfe des Hosts selber die Berechnungen durchfuhhren muss. Denn so muss sie jedes

Mal den Host um Weiterleitung der Random - Werte von der CPU aus bitten.

Wir werden fuhr unseren Infraserv1 keinen Zufallsgenerator benohtigen. Die nachfolgende Abbildung

zeigt jedoch, wie es im Falle einer Verwendung aussehen wuhrden.

 8.9.2.1.11 Kategorie → Benutzerdefinierte Eigenschaften

Es handelt sich hier um einige wenige Parameter wie etwa die Verwendung des Disk – Caches, was

ohnehin nicht mohglich ist, da auch auf diese Weise die Live – Migration ebenfalls unterbrochen wird.

Da diese Kategorie keine relevanten Parameter fuhr diese Arbeit enthahlt, wird sie auch nicht weiter

thematisiert.

Nach Erreichen dieser letzten Kategorie kann mit OK bestahtigt werden und wir gelangen zum letzten

Punkt der VM – Erstellung.

Diplomarbeit von Bogdanovic Theodor für die HFU 141

Abbildung 81: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Zufallsgenerator –
Beispiel InfraServ1

FullOpenSourceVirtualization

 8.9.2.1.12 VM – Erstellung, die virtuelle Disk

Nach Bestahtigung der VM - Erstellung wird diese auch gleich erzeugt. Die Konfiguration ist hier aber

noch nicht beendet. Gleich nach dem Bestahtigen mittels OK im vorhergegangenen Schritt, werden wir

zum Disk – Erstellungsassistenten weitergeleitet, wo wir noch eine, spahter vielleicht auch noch

mehrere, Disks erstellen kohnnen.

Wenn wir hier auf Virtuelle Disks konfigurieren klicken, ohffnet sich ein Fenster, wo wir als erstes die

Grohsse in GB setzen kohnnen. Um genuhgend Speicherplatz fuhr spahtere Nachinstallationen zu haben, aber

auch weil openSUSE selbst in der Minimalinstallation stets etwas um 5 GB an Daten installiert,

vergeben wir hier grosszuhgige 20 GB. Alias und Beschreibung sind hier von geringer Relevanz, da

oVirt im Hintergrund immer fix UUID als Namen speichert. Bei Linux, aber auch immer mehr bei

Windows Installationen, lohnt es sich, hier als Schnittstelle den paravirtualisierten Treiber VirtIO-

SCSI zu verwenden, da er die beste Performance bietet. Die Zuteilungsrichtlinie definiert, ob der

allozierte Diskspace gleich 1:1 reserviert und beschrieben werden soll (Preallocated), oder ob nur

Reservierung stattfinden soll (Thin Provision). Data – Center und Speicherdomahne sind ohnehin je nur

einzeln vorhanden und per Default vordefiniert. Unter Disk – Profil kommt nun endlich unser QoS –

Limitierungsprofil zum Einsatz, wo wir uns wieder fuhr jenes mit dem _HIGH Flag entscheiden. Die

Auswahlkästchen auf der rechten Seite sind bereits ideal gesetzt. Sie sollen dafuhr sorgen, dass erstens

unsere neue Disk uhberhaupt aktiviert wird und zweitens, dass oVirt uhberhaupt versteht, dass sie als

unser primahres Boot – Device dient, denn schliesslich kohnnten wir ja mehrere Disks haben.

Die zwei Auswahlkahstchen Gemeinsame Nutzung und Schreibgeschützt sind im Produktivbetrieb

nicht wirklich von grossem Nutzen. Wer gerne auf Nummer sicher geht, der kann aber das Kahstchen

Bereinigen nach Löschen aktivieren. Dies sorgt fuhr eine sichere Lohschung sahmtlicher Daten des

Images, um eine spahtere Wiederherstellung zu verunmohglichen.

Diplomarbeit von Bogdanovic Theodor für die HFU 142

Abbildung 82: Beginn mit dem Fine - Tuning: Vm -
Erstellung; Erstellen einer virtuellen Disk –
Beispiel InfraServ1

FullOpenSourceVirtualization

 8.9.2.2 Die erste fertige VM

Dies waren auch schon alle Schritte der VM – Erstellung. In der Liste sollten wir nun unsere VM

namens DYN_HIGH_InfraServ1 sehen und kohnnen sie auch gleich starten. Dies machen wir am

einfachsten, indem wir die VM anklicken und im oberen Rand des Fensters auf das gruhne Dreieck,

welches nach oben zeigt, nochmals klicken. Die VM startet nun, was wir am gruhnen Dreieck neben dem

VM – Namen sehen. Auf der gleichen Hohhe wie das Startdreieck haben wir ein kleines Monitorsymbol

welches uns ein *.vv File zum Herunterladen anbietet. Wenn wir dieses File herunterladen und ohffnen,

sollte unser bereits installierter SPICE – Client mit denen im File enthaltenen Informationen eine

verschluhsselte grafische Verbindung zur VM erstellen kohnnen. Das File mit den Verbindungs-

Informationen ist uhbrigens temporahrer Natur und lediglich 120 Sekunden lang guhltig.

Um die Art der Konsolenverbindung zu ahndern, kann man uhber das Kontextmenü →

Konsolenoptionen auch ein SPICE – Browser – Plugin oder einen SPICE-HTML5 Browser-Client

(Technologievorschau) nutzen. Beide funktionieren aber nur unter Fedora 23 einigermassen gut.

Fuhr Windows Freunde kann auf gleiche Art wie oben beschrieben noch auf Remote Desktop (RDP)

umgestellt werden, wobei dann anstelle eines *.vv ein *.rdp File heruntergeladen werden muss.

Nun verbinden wir uns grafisch mit der VM und installieren ein openSUSE 42.1 Leap.

Bis spahter im nahchsten Abschnitt.

Diplomarbeit von Bogdanovic Theodor für die HFU 143

Abbildung 83: Beginn mit dem Fine - Tuning: Vm - Erstellung; Erstellen einer virtuellen Disk;
Assistent – Beispiel InfraServ1

FullOpenSourceVirtualization

 8.9.3 Eine Vorlage erstellen

Nach Beendigung der Installation von DYN_HIGH_InfraServ1, wollen wir uns der Thematik der

Vorlagen widmen. Eine VM bei Bedarf zu klonen, ist eine durchaus einfache, aber sicherlich Zeit und

nervenaufreibende Angelegenheit. Besser ist es, gleich von seiner Lieblingsdirtribution eine Vorlage zu

erstellen, welche dann immer wieder verwendet werden kann. Gluhcklicherweise ist dies bei oVirt eine

simple Angelegenheit, die vollautomatisch im Hintergrund gemanagt wird. Hierzu muss die Maschine

heruntergefahren werden. Danach kann man ins Kontextmenuh der VM gehen und wahhlt dort den Punkt

Vorlage erstellen. Im sich nun ohffnenden Fenster kann man einen Namen vergeben. Hierfuhr

definieren wir die folgende Namenskonvention:

TEMPLATE_<Name der Distribution + Version>_<Name welcher die Funktion beschreibt>

In unserem Fall heisst die Vorlage TEMPLATE_openSUSE-42.1_Infrastruktur. Das Infrastruktur am

Ende definiert, dass diese Vorlage der internen Infrastruktur dient und fuhr diverse Zwecke wie DHCP,

DNS oder Directory Service dienen kohnnte. Die Beschreibung sollte an dieser Stelle etwas

aussagekrahftiger sein, da bei einer hohen Anzahl an Vorlagen schnell der Unberblick verloren gehen

kohnnte. Merkwuhrdigerweise muss nun ein Cluster definiert werden, fuhr welchen die Vorlage gelten

soll. Dies macht jedoch keinen Sinn. Die Vorlage Data – Center ist weit guhltig und Versuche haben

gezeigt, dass man die Vorlage von uhberall her erreichen kann. Wir geben trotzdem den Cluster-Level-

Middle an und definieren anschliessend, welches CPU – Limitierungsprofil gelten soll. Auch hier

wahhlen wir das hohchste aus: QoS_CPU_HIGH. Wenn wir mehrere Vorlagen mit unterschiedlicher

Software – Ausstattung hahtten, so kohnnten wir hier das Optionskahstchen Als Vorlage-Subversion

erstellen anklicken und eine Unterversion erstellen die bspw. nur fuhr Samba – Freigaben dienen

wuhrde. Wir bleiben aber bei unserer Basisvorlage und sehen unten eine Tabelle, in welcher die Disk

bereits ermittelt wurde. Auch hier kohnnen wir den Diskzugriff limitieren, indem wir unter Disk-Profil

Storage-R1_HIGH wahhlen, was wir natuhrlich auch tun. Zuunterst steht uns mit einem Optionskahstchen

noch die Mohglichkeit offen, die Vorlage allen anderen Benutzern des Data – Centers zur Verfuhgung zu

stellen. Die Option VM – Berechtigungen kopieren sollte man nicht nutzen. Dies sollte immer einzeln

konfiguriert werden.

Dies war es eigentlich schon. Die Vorlage wird nun ca. wahhrend 5 Minuten erstellt und am Ende ist sie

unter folgendem Weg ersichtlich:

Diplomarbeit von Bogdanovic Theodor für die HFU 144

Befehl 34: Realisierung des Virtualisierungssegmentes (Klicken): Der weg zur ersten Vorlage

System (Seitenleiste) → Vorlagen (Registerkarte)

TIPP

Vorsicht bei den Limi erungen der Vorlagen. Man kann noch einige Werte wie RAM oder

Kernanzahl der CPU bearbeiten, doch die Limi erungen sind #x beim Erstellen der Vorlage

integriert worden.

FullOpenSourceVirtualization

Mohchte man nun eine VM aus der Vorlage erstellen, so kann man den Prozess wie unter 8.9.2.1 „ Die

einzelnen Konfigurationsschritte der VM – Erstellung“ initialisieren und muss unter Basierend auf

Vorlage lediglich die gewuhnschte Vorlage aus der Auswahlliste auswahhlen und einen neuen Namen

samt Beschreibung vergeben. Den Rest erledigt oVirt selbststahndig, indem es alle relevanten Parameter

aus der Vorlage liest. Diese Konfiguration kann man 1:1 uhbernehmen, um eine identische VM zu

erhalten, oder man passt die Parameter seinen Wuhnschen an.

Das war es eigentlich auch schon mit den Vorlagen. Nun erstellen wir einige neu VM's fuhr den nahchsten

Teil und auch gleich fuhr die spahteren Tests.

Diplomarbeit von Bogdanovic Theodor für die HFU 145

Abbildung 84: Beginn mit dem Fine - Tuning: Vorlage - Erstellung
aus InfraServ1

FullOpenSourceVirtualization

 8.9.4 Positive und negative Affinitätsgruppen

Die Affinitahtsgruppen sind ein ideales Werkzeug, wenn man gewisse VM's, welche vielleicht eine

logische Verbindung eingehen, untereinander verankern will. So macht es Sinn, dass wenn man bspw.

einen MariaDB Cluster mittels Galera bilden mohchte, nicht gerade alle Maschinen auf dem gleichen

Node arbeiten. Zu diesem Zweck werden wir mit den neu erstellten Testmaschinen

DYN_HIGH_openSUSE-42.1_DA-VM-(1 – 3) und dem bestehenden Infraserv1 versuchen, je zwei

VM's auf Cluster-Level-Middle voneinander zu trennen und auf dem grossen Cluster je zwei auf einen

Node zu bringen. Dann werden wir in diesem Abschnitt eine neue Cluster – Richtlinie erzeugen, welche

wir auf die beiden Cluster -Middle und -High sharen werden. Anschliessend werden wir die

eigentlichen Affinitahtsgruppen bilden, welche dann aufbauend auf unsere neue Cluster – Richtlinie, als

Abhahngigkeit verweisen werden.

 8.9.4.1 Erzeugen der neuen Cluster – Richtlinie

Als erstes muhssen wir eine neue Cluster – Richtlinie erzeugen. Dabei muss man wissen, dass dies erst

ab dieser Version so ist. Bis Version 3.4 mussten Scheduling – Richtlinien erzeugt werden, welche von

oVirt muhhsam alle 20 – 60 Sekunden ausgefuhhrt werden mussten. Dies hat sich ab dieser Version

geahndert und es gibt nur noch einen oVirt internen Scheduler, welcher nur noch von Trigger – Werten

angestossen wird. Solche Trigger – Werte sind heute von Filtern und deren Gewichtungen abhahngig,

welche in Richtlinien definiert werden. Somit ist es an dieser Stelle notwendig, eine neue Cluster –

Richtlinie zu erzeugen, was wir auch mit nachfolgendem Klick – Weg einleiten wollen:

Wenn wir dies getan haben, sehen wir eine Liste mit in dieser Arbeit noch nicht genannten

Konfigurationsnamen. Was aber nicht ganz stimmt, denn einen Namen davon haben wir bei der

Erstellung der Cluster schon einmal gesehen und zwar die Richtlinie none, welche wir als Defaultwert

belassen haben. Technisch gesehen muhssen wir lediglich einen Parameter in dieser Richtlinie ahndern.

oVirt eigene Konfigurationsparameter lassen sich jedoch prinzipiell weder ahndern noch lohschen, was

der Grund fuhr eine Neuerstellung ist. Gluhcklicherweise kohnnen wir aber none mittels Klick auf

Kopieren in der daruhber liegenden Button – Leiste einfach klonen und nachtrahglich bearbeiten. Wenn

wir diesen Prozess initialisieren, ohffnet sich das Konfigurationsfenster. Dort werden sahmtliche

Parameter von „none“ angezeigt. Als erstes vergeben wir einen Namen und eine Beschreibung . In

diesem Fall folgende Parameter:

Name: DC1R1

Beschreibung: Default Cluster-Polices for this Data-Center

Analysieren wir nun die vorhandenen Abschnitte innerhalb des Konfigurationsfensters Schritt fuhr

Schritt:

• Filtermodule: Hier kohnnen die logischen Filter gesetzt werden, welche jede VM beim Starten

als Pruhfabhahngigkeiten durchlaufen muss, um zu ermitteln, ob gewisse Pruhfparameter gesetzt

Diplomarbeit von Bogdanovic Theodor für die HFU 146

Befehl 35: Realisierung des Virtualisierungssegmentes (Klicken): Zum Konfigurationsmenü der Cluster – Richtlinien

Kon�gurieren (Systemleiste zu oberst am rechten Browser – Rand) → Cluster – Richtlinien (Kategorie)

FullOpenSourceVirtualization

sind. Dabei gibt es Pruhfpunkte wie bspw. CPU und RAM, welche von oVirt selbst abhahngig sind

und wo oVirt bei fehlerhaften Parametern gleich selbst eingreift, ohne dabei auf andere

logische Abhahngigkeiten zu pruhfen. Dann gibt es Punkte, welche technisch gesehen nicht

notwendig sind und oVirt auch nicht weiss, ob es diese mit in die Pruhfung nehmen muss. Ein

solcher Punkt ist die Pruhfung auf vorhandene Affinitahtsgruppen. Man muss also einen

zusahtzlichen Filter in den Pruhfalgorithmus mitaufnehmen, um oVirt darauf hinzuweisen, dass

dieser auch eine Abhahngigkeit darstellt. Unser Filter an dieser Stelle trahgt den Namen

VmAffinityGroups und ist als Defualt – Wert in der geklonten Richtlinie bereits enthalten. Die

Flags Erster und Letzter innerhalb der Profilauswahl haben nichts mit der Pruhfreihenfolge zu

tun, womit hier ein Nachsortieren wegfahllt.

• Gewichtungsmodule: Hier werden die Pruhfmodule zu den einzelnen Filtern gesetzt. Die

Reihenfolge dieser ist fuhr die spahtere Logik von grohsster Bedeutung, d.h wie oVirt pruhfen soll

und was Vorrang haben soll. Unser Modul zum Filter trahgt den gleichen Namen und ist zu

unterst in der Liste. Dies macht im Normalfall auch Sinn, da die HA Module technisch gesehen

immer Vorrang haben sollten. Da wir ja aber kein vollautomatisches HA besitzen, kohnnen wir

hier die Reihenfolge auch ahndern. Hierfuhr kann man die Nummerierung auf der linken Seite

neben dem Modulnamen nutzen. Etwas umstahndlicher: Alle Module nach rechts versieben

(Deaktivierte Gewichtungen) und sie in der richtigen Reihenfolge wieder in den aktiven

Bereich ziehen. Hier gilt der Grundsatz: Haben alle die gleiche Nummer als

Ausfuhhrungsprioritaht, so entscheidet die Reihenfolge.

• Lastverteiler: Hier kann definiert werden ob eine Lastverteilung innerhalb der Cluster

stattfinden soll. Falls ja: Soll sie allgemein guhltig sein, soll sie nur fuhr Gahste (externe Provider)

gelten oder soll, sogar stromsparend mittels shutdown gearbeitet werden. Wir werden hier

den allgemeinen Modus wahhlen und wollen somit, dass Maschinen migriert werden, falls ein

gewisser Grenzwert erreicht wird. Dieser Punkt ist die eigentliche Annderung, welche hier

angestrebt wurde, da ansonsten alle hier vorgenommenen Arbeiten nur fuhr die simple Pruhfung

des VM – Starts anwendbar wahren.

• Eigenschaften: Hier kohnnen noch eigene Parameter uhbergeben werden, welche sich auf die

Lastteilung auswirken. Wir werden hier zwei Grundparameter setzen, welche sich spahter

innerhalb eines Clusters im Notall noch uhberschreiben lassen. Die Parameter, die wir hier

ergahnzen, sind folgende:

◦ HighUtilization → Besagt fuhr den angewendeten Cluster, was die Grenzwerte seiner Hosts

sind und wann der Trigger fuhr den interen Scheduler greifen soll. Hier definieren wir den

Parameter 70 und teilen dem Cluster mit, dass er bei 70% Auslastung eines Hosts

reagieren muss, ausser der nachfolgende Wert trifft zu.

◦ CpuOverCommitDurationMinutes → Dieser Wert ist auf 3 gesetzt. Er erlaubt ein

Unberschreiten des fuhr den Host gesetzten Grenzwertes fuhr 3 Minuten. Dies ist absolut in

Ordnung, da in 3 Min. keine grohsseren Temperaturerhohhungen bei 70% zu erwarten sind.

Haben wir alles eingetragen, so kohnnen wir das Fenster mit OK schliessen.

Diplomarbeit von Bogdanovic Theodor für die HFU 147

FullOpenSourceVirtualization

Nun haben wir eine neue Cluster – Richtlinie und muhssen diese noch auf den Clustern verteilen.

Hierfuhr gehen wir auf Cluster-Level-High als Referenzbeispiel:

Hier sehen wir zu oberst die Auswahlliste Richtlinien wählen, wo wir unsere neue Richtlinie DC1R1

auswahhlen und mit OK bestahtigen. Das war es auch schon.

Diesen Schritt wiederholen wir nun auch fuhr Cluster-Level-Middle.

Diplomarbeit von Bogdanovic Theodor für die HFU 148

Abbildung 85: Beginn mit dem Fine - Tuning: Erstellen einer Cluster - Richtlinie (DC1R1)

Befehl 36: Realisierung des Virtualisierungssegmentes (Klicken): Einrichten der Cluster – Richtlinie auf Cluster-
Level-High.

System (Seitenleiste) → Cluster (Registerkarte) → Cluster-Level-High (Kontextmenü) → Bearbeiten →

Cluster-Richtlinien (Kategorie)

Abbildung 86: Beginn mit dem Fine - Tuning: Verteilen der neuen Cluster -
Richtlinie

FullOpenSourceVirtualization

Technisch gesehen haben wir hier alles fuhr die Einrichtung der Affinitahtsgruppen vorbereitet.

Aufgrund der schrittweisen Verschmelzung der einzelnen Funktionen in oVirt, haben wir mit nur drei

kleineren Paramteren auch gleich das gesamte Ressourcenmanagement fuhr das Data – Center mit

konfiguriert. Somit haben wir nun ein Gebilde, das pro Cluster selbststahndig die CPU – Auslastung

beobachtet und bei Unberschreiten der zulahssigen 70% auf 3 Minuten mit der Live – Migration der

Maschinen beginnt. Dabei achten die Cluster speziell auf die Affinitahtsgruppen und versuchen, dies so

gut wie mohglich in positiver oder negativer Polaritahtsform in Abhahngigkeit zu bringen.

Doch an dieser Stelle weiss oVirt gar nicht, nach welchen Gruppenrichtlinien es uhberhaupt die

Maschinen behandeln muss. Also konfigurieren wir die Gruppenabhahngigkeiten nun im nahchsten

Schritt.

 8.9.4.2 Erzeugen der Affinitätsgruppen

Das Bilden von Affinitahtsgruppen ist technisch gesehen nur das Erzeugen von Listen, in welchen

definiert wird, welche Maschinen dort Mitglieder sind und wie ihre Polaritaht zueinander sein soll. Zu

diesem Zweck gehen wir zum folgenden Konfigurationspunkt und werden eine Referenzkonfiguration

an Cluster-Level-Middle erzeugen:

In der leeren Liste treffen wir den altbewahhrten Button Neu an, den wir anklicken und uns dem

Konfigurationsassistenten widmen. Wie uhblich vergeben wir einen Namen und eine Beschreibung nach

folgendem Schema:

Name → AG_N_DA; wobei hier das „N“ fuhr negative Polaritaht steht. Wir wollen also, dass die sich in

dieser Liste befindlichen Maschinen negativ zueinander verhalten, was im Klartext bedeutet, dass sie

sich vorlahufig nicht auf dem gleichen Host aufhalten duhrfen.

Beschreibung → Ist frei wahhlbar, muss aber bei dieser Komplexitaht doch noch irgendeinen Sinn

ergeben.

Das erste Optionskahstchen definiert, ob es sich hier um eine positive Affinitaht handelt, d.h. ob die

Maschinen zusammen auf einem Host gehalten werden sollen oder, ob sie wie in unserem Fall negativ

ist. Das Optionskahstchen Erzwingen differenziert intern zwischen Hard und Soft. Ist es aktiv (Hard),

so bedeutet dies, dass diese Affinitaht auf jeden Fall eingehalten werden muss. Es ist belanglos, ob nun

HA aktiv wird, um einen Notfall abzuarbeiten oder der Admin eine manuelle Migration von Hand oder

per Wartungsmodus initiiert. Deaktiviert man aber das Erzwingen, so kann man manuell ohne

weiteres migrieren, auch wenn dies zu einem Affinitahtsbruch fuhhrt. HA wuhrde ebenfalls die Regeln

etwas biegen kohnnen, um im Notfall einen einigermassen konsistenten Zustand zu erreichen, jedoch

gilt dies speziell fuhr diese Arbeit nicht. Wie wir uns erinnern, haben wir bei der Erstellung der neuen

Cluster – Richtlinie die Gewichtung fuhr das Modul VMAffinityGroups zu oberst platziert und somit das

HA ausgehebelt. Dies fahllt aber nicht weiter ins Gewicht, da das vollautomatische HA hier ohnehin

Diplomarbeit von Bogdanovic Theodor für die HFU 149

Befehl 37: Realisierung des Virtualisierungssegmentes (Klicken): Bilden der ersten Affinitätsgruppe.

System (Seitenleiste) → Cluster (Registerkarte) → Cluster-Level-Middle (Anklicken) → ATnitätsgruppen

(untere Registerkarte)

FullOpenSourceVirtualization

nicht funktioniert und das manuelle Fencing solche Richtlinien im allgemeinen ignoriert. Lediglich die

Gewichtungen von Modulen wie CPU und RAM behalten ihre Wertigkeit und Dringlichkeit bis zum

Schluss.

Im darunterliegenden Auswahlfeld kann nun die erste Maschine ausgewahhlt werden und dann die

nahchste mittels „+“ usw. Die Liste umfasst dabei alle im Cluster befindlichen Maschinen und wird auch

mit jeder getroffenen Auswahl entsprechend kleiner. In unserm Fall wahhlen wir DYN_HIGH_InfraServ1

und DYN_HIGH_openSUSE-42.1_DA-VM-1 aus. Wir wollen ja in diesem Testbeispiel nicht, dass unser

DHCP / DNS Server durch eine andere Maschine gestohrt wird.

Dies war es auch schon. Wir haben den Clustern mit der neuen Cluster – Richtlinie gesagt, wie sie sich

verhalten sollen und jetzt mit der Affinitahtsgruppe, wie es aussehen soll. Sollten noch Maschinen in

einem gebrochenen Zustand bezuhglich ihrer Affinitaht sein, so muhssen diese jetzt neu gestartet werden,

um sich der neuen Affinitaht anzupassen. Prinzipiell lohnt sich eine Affinitahtskonfiguration immer vor

dem Starten spezieller Maschinen.

Fuhr den Cluster-Level-High definieren wir an dieser Stelle gleich im Voraus die Affinitahtsgruppe,

welche wir spahter fuhr die Tests benohtigen werden. Dabei wird nach Ablauf der gerade beschriebenen

Referenzkonfiguration folgendes an Parametern uhbergeben:

AG_P_DA:

• Positiv → aktiv

• Erzwungen → aktiv

• Host 1 → DYN_HIGH_openSUSE-42.1_DA-VM-2

• Host 1 → DYN_HIGH_openSUSE-42.1_DA-VM-3

Diplomarbeit von Bogdanovic Theodor für die HFU 150

Abbildung 87: Beginn mit dem Fine - Tuning: Erstellung einer
Affinitätsgruppe für Cluster-Level-High als Referenzbeispiel.

FullOpenSourceVirtualization

 8.9.5 Exkurs zur Asymmetrie des Aufbaus

Nun haben wir bis hierhin viel uhber Lastverteilung und halbautomatisches HA gehohrt, jedoch noch nie

konkretisiert, wie es genau umgesetzt werden kann. Bei einem korrekten Aufbau wahren hier vier Hosts

mit der gleichen ressourcentechnischen Ausstattung, was die Berechnung des HA Designs

vereinfachen wuhrde. Betrachten wir hierzu folgende Grafik:

Unter der Annahme, dass nur ein Node ausfallen duhrfte, sehen wir, dass bei einem perfekt

symmetrischen Cluster nur eine Betriebslast von 53,33% mohglich wahre. Dies resultiert aus der

Tatsache, dass eine Temperatur – Reserve von 20% mit eingerechnet werden muss, um den Prozessor

vor Unberhitzung zu schuhtzen. Somit ergibt sich ein Maximum von 80% je Node, was durch drei geteilt

werden muss im Falle eines Node Ausfalles. Hieraus resultiert die Last von 26,66%, welche von jedem

Node im Notfall getragen werden muhsste ohne selbst uhber seine 80% - Grenze zu gelangen. Somit kann

bei grosszuhgiger Abrundung gesagt werden, dass die durchschnittliche Last je Node gerade einmal die

Hahlfte seiner Kapazitaht darstellt. Wie gesagt, dies wahre die optimale Betriebsumgebung. Sehen wir uns

dies einmal mit den beiden Nodes des Clusters Cluster-Level-High an, welcher klar asymmetrisch

aufgebaut ist.

Dies wahre die einfachste Lohsung, da mathematisch gesehen der Dell den gesamten Sumpermicro 4HE

inklusive seiner Temperatur – Reserve aufnehmen kohnnte. Dabei entspricht sein Betriebsmaximum in

Diplomarbeit von Bogdanovic Theodor für die HFU 151

Abbildung 88: Exkurs zur Asymmetrie des Clusters: Ein perfekt symmetrischer Cluster.

Abbildung 89: Exkurs zur Asymmetrie des Clusters: Die
einfachste Lösung

FullOpenSourceVirtualization

Relation zur vierfachen Leistung zum Supermicro 4HE, 220%. Mit dieser Variante kohnnten theoretisch

80% der VM's uhber Semi-Automatic-HA gerettet werden bis der Supermicro 4HE wieder

betriebsbereit wahre. Was aber wenn der Dell ausfahllt? Aufgrund der Leistungsdiskrepanz ist eine

hundertprozentige Rettung der VM's nicht mohglich. Definiert man aber eine fixe Anzahl an VM's mit

hoher Prioritaht und verteilt diese auf beide Hosts, so hat man mit Beschrahnkung auf diese fixe

Maximalanzahl dennoch die Mohglichkeit, 80% der VM's sicher zu betreiben. Dies wuhrde ungefahhr wie

in nachfolgender Abbildung aussehen:

Bei dieser Variante kohnnte der Dell mit 210% unprivilegierten VM's arbeiten und muhsste 40% der

VM's vom Supermicro halten, was nach dem umrechnen ca. 10% fuhr den Dell bedeuten. Damit hahtte

der Dell, vom Supermicro 4HE aus gesehen, 70% seiner regulahren Leistung und kohnnte 10% (40% fuhr

den Supermicro 4HE) fuhr ihn halten. Bei einem Ausfall des Dell wahren somit seine umgerechneten 40%

+ die 40% des Supermicro 4HE wieder 80% an mohglichen VM's die HA fahhig wahren. Reduziert man

aber die Leistung des Dell um weitere 10% (40% vom Supermicro 4 HE gesehen), kann man eine

zusahtzliche Reserve schaffen, welche den Ausfall des Supermicro 4 HE wiederum abfangen kohnnte.

Somit wuhrde der Dell nach Umrechnung mit 60% seiner maximalen Leistung arbeiten und der

Supermicro 4 HE bei realer Betrachtung mit 40%, womit technisch gesehen eine hohe

Leistungsausbeute erzielt wird, aber dennoch ein 80%-er Teil an VM's da wahre, welcher HA fahhig

bleiben kohnnte. Dies ist augenscheinlich die beste Lohsung und wird mit 90% Wahrscheinlichkeit auch

umgesetzt.

Die der Cluster Cluster-Level-Middle wird an dieser Stelle nicht thematisiert. Er ist symmetrisch und

kann beim Abzug der 20% fuhr die Temperatur – Reserve ohnehin nur noch 40% je Node halten. Dies

ist bei 8 GB RAM zu wenig, weswegen hier vermutlich auf HA verzichtet wird.

Bezuhglich der Realwerte an mohglichen VM's wurde hier bewusst auf Zahlen verzichtet. Erst im

Diplomarbeit von Bogdanovic Theodor für die HFU 152

Abbildung 90: Exkurs zur Asymmetrie des Clusters: Die etwas
kompliziertere Variante

FullOpenSourceVirtualization

Produktivbetrieb kann die Zahl an VM's schrittweise definiert und somit genannt werden. Der Beginn

des Produktivbetriebs ist aber erst nach der Fertigstellung und der Prahsentation dieser Arbeit. Jedoch

werden auch dann die Prozentual – Werte ausschlaggebend sein fuhr die exakte Berechnung der VM –

Zahlenwerte, womit die Einheit Prozent hier ohnehin der ausschlaggebende Faktor ist.

 8.10 User und Rechtemanagement

Prinzipiell wird fuhr den Produktivbetrieb seitens des Autors keine User- und Rechteverwaltung

benohtigt, da ja der einzige Admin der Autor selbst ist. Um aber die Integritaht dieser Arbeit als spahtere

neutrale Bedienungsanleitung zu gewahhrleisten, soll an dieser Stelle eine kurze Einleitung stattfinden,

welche die wichtigsten Schritte behandelt. Vorab muss aber gesagt werden, dass oVirt in der Version

3.5 die vier Authentifizierungsdienste ad (Microsoft Avtive Directory), oldap (openLDAP), ipa

(RedHat's eigene Kreation freeIPA) und rhds (389 Directory Server) unterstuhtzt. Es besteht noch die

Mohglichkeit itds (IBM Security Directory Server) einzubinden, doch ist diese kommerzielle Variante

innerhalb dieser stark open source- lastigen Arbeit keine Alternative. Ebenfalls wichtig zu erwahhnen

ist die Tatsache, dass fuhr alle Varianten ein Kerberos Server notwendig ist. Hier musste aber mit

Schwierigkeiten bezuhglich Kerberos gekahmpft werden, da keine manuelle Konfiguration mit der Engine

(Java Code) zusammenarbeiten wollte, selbst eine eins zu eins uhbernommene

Referenzimplementierung von FreeBSD brachte keinen Erfolg. Lediglich die Directory Implementation

von Microsoft konnte hier problemlos angebunden werden. Da hier aber keine Microsoft Produkte

verwendet werden sollen, ist als alternative eine Zentyal 4.2 Installation zum Einsatz gekommen,

welche mittels Samba 4 einen Microsoft AD emuliert. Diese Wahl ist als Temporahrlohsung fuhr diese

Arbeit ideal, da sie schnell installiert ist und eine bequeme Mohglichkeit der GUI – basierten

Konfiguration bietet.

In diesem Teil soll in zwei Abschnitten erklahrt werden wie eine Domahne in die Engine eingebunden

wird und wie die User nachfolgend ins System integriert werden bzw. auf welche Weise ihnen welche

Rechte erteilt werden.

 8.10.1 Domäne in oVirt einbinden

Wir verwenden an dieser Stelle einen „Active Directory“ Authentifizierungsserver, dessen

Spezifikationen an dieser Stelle nicht nahher thematisiert werden. Entscheidend sind dabei lediglich

folgende Parameter:

• Domain → localdom.lan

• Domain Admin → ovirtadm

• Server → dc1.localdom.lan

An dieser Stelle ist es notwendig, sich per SSH mit der Engine zu verbinden, da nachfolgender Befehl

auf der Konsole eingegeben werden muss:

Diplomarbeit von Bogdanovic Theodor für die HFU 153

Befehl 38: User und Rechtemanagement (Klicken): Einbinden einer Domäne zur Authentifizierung per Active
Directory.

engine-manage-domains add --domain=localdom.lan --provider=ad --ldap-servers=dc1.localdom.lan

--user=ovirtadm

FullOpenSourceVirtualization

Dieser Befehl umfasst dabei folgende Logik:

• --domain → Hier wird die Domahne eingetragen, welche der AD betreut.

• --provider → Ist die Art des Authentifizierungsdienstes, welcher verwendet werden soll.

• --ldap-servers → Ist hier speziell notwendig, da der AD im Netzwerk virtdom steht. Ein Aufruf

des Befehls ohne diesen Parameter bewirkt eine Suche nur innerhalb der Broadcast – Domahne.

• --user → Ist der Domain Administrator Account, welcher benohtigt wird, um das Directory

auszulesen.

Ist dieser Befehl abgesetzt muss anschliessend in interaktiver Form noch das Admin – Passwort

eingegeben werden. Nach einer gefuhhlten Ewigkeit meldet der Konfigurationsbefehl, dass die Domahne

hinzugefuhgt wurde, aber die User keine Rechte besitzen wuhrden. Diese muhsse man mit dem Parameter

--add-premissions noch nachholen. Dies ist aber absolut nicht notwendig und kann spahter uhber das

GUI auf bequeme Art nachgeholt werden. Als letzten Schritt muhssen wir nur noch den Application –

Server neu starten. Dies geschieht mit nachfolgendem Befehl:

Dies was es auch schon mit der Domahnen – Integration. Sie ist nun eingebunden, kann aber noch nicht

genutzt werden. Kommen wir nun zum zweiten Schritt und somit zur eigentlichen Einbindung der

einzelnen AD – User.

 8.10.2 Einbinden der einzelnen User aus dem AD

Nun werden wir in einem ersten Schritt den User ovirtadm zu Demonstrationszwecken den ins

Management – System der Engine holen. Dafuhr klicken wir uns auf folgende Weise zum Einbindemenuh.

An dieser Stelle sehen wir den per Default von oVirt bei der Installation erzeugten Administrations –

Account admin. An dieser Stelle ist noch der Account Everyone anzutreffen, dessen Funktion nicht

ganz klar ist und auch nicht uhber die oVirt Dokumentation ermittelt werden konnte. Wir klicken nun

am oberen Rand der User – Liste auf Hinzufuhgen und gelangen zum Konfigurationsfenster. Hier kohnnen

wir nun in der ersten Auswahlliste Suchen unsere Domahne localdom.lan auswahhlen. Das Feld

Namensraum beinhaltet nur ein Sternchen und hat keine Auswahloptionen, da wir nur eine Ebene

innerhalb unsers AD's haben. In der Textbox daneben kohnnen wir unsere Suche einschrahnken, indem

wir den Usernamen eingeben. Dies lohnt sich, da das Standard – Directory von Zentyal doch einige

Eintrahge beinhaltet. Nachdem wir alles entsprechend ausgewahhlt und eingegeben haben, kohnnen wir

auf LOS klicken und sehen nun unseren User als einzigen Eintrag in der Liste. Nun muhssen wir nur den

Diplomarbeit von Bogdanovic Theodor für die HFU 154

Befehl 39: User und Rechtemanagement (Klicken): Neustart des Application – Server zur Domänen – Einbindung.

service ovirt-engine restart

Befehl 40: User und Rechtemanagement (Klicken): Der Weg zum Einbinden eines neuen Users aus der Domäne.

System (Seitenleiste) → Benutzer (Registerkarte)

FullOpenSourceVirtualization

User auswahhlen und mittels OK bestahtigen, was ihn als neutralen SystemUser in die Engine einbindet.

Der User erscheint nun in der Liste mit einem neutralen Icon und einer Beschreibung seiner Domahnen

– Zugehohrigkeit. So nuhtzt uns der User aber im Moment nicht viel, da er keinerlei Rechte besitzt und

seine Rolle gegenuhber oVirt nicht genau definiert ist. Um dies zu ahndern wahhlen wir folgendes:

Hier klicken wir als erstes auf die Kategorie Systemberechtigungen und sehen eine Liste mit den

beiden Usern admin@internal (Rolle → SuperUser) und admin@internal (Rolle → PowerUser). Dies

bringt uns auch gleich zum wichtigsten Punkt in oVirt, nahmlich der Trennung von Administratoren und

Usern. Fuhgen wir einen User als Administratorrolle ein, so kann er beim Login sowohl ins

Administrationsportal als auch ins Benutzerportal eintreten. Fuhgen wir jedoch einen User als

Benutzerrolle ein, so ist ihm nur der Login ins Benutzerportal mohglich. Dies ist von Vorteil wenn man

eine grohssere Menge an Kunden besitzt, welche Virtualisierungsdienste in Anspruch nehmen. Um

unseren User ovirtadm eine Systemberechtigung zu vergeben, klicken wir am oberen Rand des

Fensters auf Hinzufügen. Es ohffnet sich hier ein Fenster wie in Abbildung 91, wo wir wieder gleich

vorgehen wie oben beschrieben. Dieses Fenster ist aber nicht absolut identisch mit dem in Abbildung

91. Im unteren Bereich ist eine Auswahlliste namens Zuzuweisende Rolle, wo wir uns fuhr die Rolle

SuperUser entscheiden. Auf diese Weise kohnnen wir einen zweiten Administrations – Account

erohffnen und somit den internen Admin – Account als reinen Backup zuruhckstufen, wofuhr er

theoretisch auch vorgesehen ist. Als wir aber in der Liste nach SuperUser suchten, haben wir gesehen

dass eine Vielzahl an Rollen vorhanden war. Was sind das alles fuhr Rollen? Man findet sie in der

Nachbarkategorie Rollen, wo sie alle aufgelistet sind. Hier finden sich Rollenname wie Cluster-, Host-

oder NetworkAdmin, welche im Grunde genau die Funktion haben, welche auch im Namen vorkommt.

Man erkennt ebenfalls auf den ersten Blick, dass es blaue und gruhne Symbole gibt. Auf diese Farben

kann man sich auch verlassen, da sie einer oVirt internen Konvention folgen, wobei blaue

Administrations- und gruhne Benutzerrollen darstellen. Mohchte man selbst neue Rollen erstellen, so

genuhgt ein Klick auf Neu. Man landet in einem neuen Konfigurationsfenster, wo man definieren kann,

ob die neue Rolle einen Admin- oder einen Benutzerstatus haben soll. Danach kann man je nach

vorheriger Vorwahl aus einer breiten Liste an Optionen wie System, Vorlagen, Disk oder VM, mit

unzahhligen Unterkategorien wahhlen. An dieser Stelle soll nicht weiter auf diesen Bereich eingegangen

werden, da es weit mehr Optionen gibt als Platz innerhalb dieser Arbeit.

Diplomarbeit von Bogdanovic Theodor für die HFU 155

Abbildung 91: User und Rechtemanagement: Auswählen von ovirtadm aus der Domäne.

Befehl 41: User und Rechtemanagement (Klicken): Beginn mit der Rollen- und Rechtevergabe.

Kon�gura�on in der rechten Seite oben am Browserrand.

FullOpenSourceVirtualization

Unser Beispiel mit dem Account ovirtadm auf der Rolle SuperUser zeigt einen der grohssten Vorteile

innerhalb von oVirt, nahmlich das automatische Setzen der Berechtigungen der VM's beim Erstellen.

Technisch gesehen muhsste eine Rolle nur die elementarsten Funktionen wie Schreibrechte auf Storage

oder allgemein das Recht auf VM – Erstellung haben. Meldet man sich nahmlich als User am

Administrationsportal an und erstellt eine VM, so hat man automatisch die vollen Berechtigungen und

das Eigentum an besagter VM. Dies gilt aber nur fuhr domahnenabhahngige Accounts wie unser ovirtadm

aus localdom.lan. Der interne Administrator ist, wie bereits erwahhnt, nur ein Backup – Account,

welcher im Notfall, wie bspw. dem Verbindungsverlust zum AD, zum Einsatz kommen sollte.

Dies war es eigentlich auch schon mit der User – Einbindung inklusive Rechtevergabe. Wir haben an

dieser Stelle ein simples Beispiel mit einer hoch privilegierten Superuser – Rolle gesehen. Theoretisch

gibt es eine Vielzahl an mohglichen Variationen wo man mit Admin- und Benutzerrollen spielen kann.

Dies hahngt stark mit dem Einsatzzweck und Einsatzgebiet von oVirt zusammen An dieser Stelle kann

nicht mehr gezeigt werden, als das absolute Minimum fuhr einen durchschnittlichen Einsatzzweck.

 8.11 Vorläufiges Fazit zur Realisation

Ab diesem Punkt haben wir einen funktionierenden Virtualisierungscluster welcher die wichtigsten,

aber auch die im Pflichtenheft definierten Funktionen erfuhllt. Es wahre theoretisch eine einfache

Realisation gewesen, jedoch kam es wegen der schlechten Dokumentation seitens des oVirt Projektes

immer wieder zu kleineren Problemen, welche die Realisierung in die Lahnge zogen. Zum Zeitpunkt des

Schreibens dieser Zeilen kam noch erschwerend hinzu, dass das oVirt Projekt seine Webseite

umstrukturierte und sie dem aktuellen Release 3.6 angepasst hat. Somit ist die Suche nach

Konfigurationshilfen ab Version 3.3 bis 3.5 heute noch schwieriger als noch zu Beginn der ersten

Vortests. Dennoch wurde aus Sicht des Autors ein akzeptables Ergebnis erzeugt, welches fuhr den

spahteren Produktivbetrieb absolut geeignet ist.

Diplomarbeit von Bogdanovic Theodor für die HFU 156

TIPP

Das Erstellen von zusätzlichen Rollen ist meistens nicht notwendig, da die Systemvorlagen

bereits alle erdenklichen Szenarien eines Clusterbetriebes abdecken. Bei neuen Rollen

besteht zudem auch das Risiko, dass man einen Teil des grossen Ganzen übersieht und die

eigene Rolle mehr zulässt, als man eigentlich wollte.

FullOpenSourceVirtualization

 9 Verifizierung der Funktionsfähigkeit
An dieser Stelle soll mit Tests die Funktionsfahhigkeit wie beschrieben und in Pflichtenheft definiert,

erwiesen werden. Hierzu wird wie bereits im Abschnitt Realisation angedeutet, in zwei Testsektionen

hervorgehoben. In der ersten Testsektion wurden primahr grohbere Tests durchgefuhhrt, welche sich mit

dem Trennen von Kommunikationsverbindungen untereinander befassen. Hier wird klar auf die

teilweise Ausfallsicherheit von Komponenten wie bspw. die netzwerkseitige Trennung der Storages

oder das reale Vorhandensein von LACP im VM – Netzwerkbereich getestet. Der zweite Teil befasst sich

mit Parametertests wie bspw. Ressourcenbegrenzung, Ermittlung des Verteilens der Daten uhber den

GlusterFS Storage oder die Berechtigungen des Usermanagements.

Zur besseren Unbersicht werden die Messprotokolle in drei Sektionen unterteilt. Sie werden stets mit

einer tabellarischen Beschreibung des Testszenarios beginnen, gefolgt vom Mittelteil welcher den

grafischen Nachweis des Tests enthahlt und mit einem ebenfalls tabellarisch strukturierten

Abschlussbericht, welcher den Status des Tests enthahlt enden.

 9.1 Testumgebung

Die Testumgebung entspricht dem fertigen Aufbau des Virtualisierungsclusters, welcher innerhalb

dieser Arbeit realisiert wurde. Siehe dazu nachfolgende Abbildung.

Diplomarbeit von Bogdanovic Theodor für die HFU 157

Abbildung 92: Tests: Die Testumgebung in grafischer Form.

FullOpenSourceVirtualization

 9.2 Testreihe 1 Definitionen

Nachfolgend sind die Parameter und der eigentliche Testablauf der Testreihe 1 beschrieben. Die hier

definierten Punkte sind notwendig fuhr die Umsetzung der Tests. Kleinere Annderungen welche

innerhalb der Tests als notwendig erachtet werden, um eine bessere grafische Darstellung der

Ergebnisse zu ermohglichen sind denkbar. Es wird aber darauf geachtet, dass diese Abweichungen zu

den unten definierten Punkten keinen Einfluss auf das reale Ergebnis haben. Sie werden bei einem

mohglichen auftreten dennoch spezifisch innerhalb der Testprotokolle deklariert.

 9.2.1 Parameter für die Testreihe 1

Innerhalb der Grobtests werden folgende Parameter an VM's und Software verwendet:

• STATIC_debian_Testsys_1: Keine Ressourcenbegrenzung fuhr CPU, Netzwerk und Storage

• STATIC_debian_Testsys_2: Keine Ressourcenbegrenzung fuhr CPU, Netzwerk und Storage

• STATIC_debian_Testsys_3: Keine Ressourcenbegrenzung fuhr CPU, Netzwerk und Storage

Diese VM's wurden vor Beginn des Fine – Tunings erzeugt und besitzen keinerlei Begrenzungen im

Ressourcenbereich. Sie haben lediglich den simplen Zweck virtuelle System fuhr diverse Testszenarien

bereitzustellen.

Innerhalb dieser Testreihe wird hauptsahchlich tcpdump zum Einsatz kommen, welches die

Netzwerkkonnektivitaht im Unterbruchfall nachweisen soll. Bei gewissen Test werden auch

Kommandozeilen – Programme zum Einsatz kommen, welche diverse Zustahnde grafisch nachweisen

sollen. Diese Tools sind aber von herkohmmlicher Natur und werden nur bei speziellem Bedarf genauer

erklahrt. Der Grossteil der grafischen Nachweisbarkeit soll aber uhber die Statusmeldungen von oVirt

selbst erfolgen, da es auch im Realbetrieb die erste Anlaufstelle bei Stohrungen sein wird.

 9.2.2 Notwendige Tests für die Testreihe 1

Innerhalb dieser Testreihe sollen die nachfolgend genannten Test durchgefuhhrt werden. Sie sollen die

Ausfallsicherheit der Netzwerkinfrastruktur, das Verhalten bei Node (Engine) Ausfahllen sowie die

Initialisierung des HA mittels manuellem Fencing pruhfen und bestahtigen.

• Verhalten beim Ausfall eines Bonding – Ports bei diversen Nodes (Management Netzwerk).

• Verhalten beim Ausfall mehrerer Bonding – Ports im VM – Netzwerk.

• Verhalten beim Initialisieren des manuellen Fencing in Bezug auf Semi-Automaitc-HA.

• Neustart der Engine um das Verhalten des Clusters zu ermitteln.

Diplomarbeit von Bogdanovic Theodor für die HFU 158

FullOpenSourceVirtualization

 9.3 Testreihe 2 Definitionen

An dieser Stelle gelten die gleichen Rahmenbedingungen und Pflichten wie unter Punkt 9.2.

 9.3.1 Parameter für die Testreihe 2

Fuhr die Tests aus der Reihe 2 wurden die VM's bereits innerhalb der Realisation unter Kapitel 8 bereits

erzeugt. Diese werden fuhr Testreihe 2 teilweise umkonfiguriert, um gewisse Test durchfuhhren zu

kohnnen. Hierbei handelt es sich hauptsahchlich um die Annderung der zu nutzenden Ressourcen, welche

zu folgendem Bild fuhhren:

• DYN_HIGH_openSUSE-42.1_DA-VM-1:

◦ CPU → Level _HIGH

◦ Netzwerk → Level _HIGH

◦ Speicher → Level _HIGH

• DYN_HIGH_openSUSE-42.1_DA-VM-2:

◦ CPU → Level _HIGH

◦ Netzwerk → Level _HIGH

◦ Speicher → Level _HIGH

• DYN_HIGH_openSUSE-42.1_DA-VM-3:

◦ CPU → Level _MIN

◦ Netzwerk → Level _MIN

◦ Speicher → Level _MIN

Die zu verwendenden Testtools sind umfangreich und werden in den entsprechenden Testprotokollen

genauer definiert. Auch an dieser Stelle stellt das oVirt GUI einen elementaren Teil des grafischen

Nachweises an erwarteter Funktionalitaht dar.

 9.3.2 Notwendige Tests für die Testreihe 2

Hier sollen mit Schwerpunkt Virtualisierung die Fahhigkeiten von oVirt als Management Engine getestet

werden. Innerhalb dieser Testreihe sollen die Fahhigkeiten von oVirt in Bezug auf Sicherheit, die

Fahhigkeit auf Fehlererkennung und Ressourcenbegrenzung getestet und protokolliert werden.

Zusahtzlich soll innerhalb dieser Testreihe auch die Isolationsfahhigkeit der Regelsahtzte von pfSense

getestet werden.

Die Strukturierung des Pruhfungsablaufs orientiert sich an dieser Stelle wieder dem allgemeinen

Grundaufbau dieser Arbeit. Somit werden die Tests der Reihenfolge Netzwerk, Virtualisierung und

Storage folgen. Aufgrund der Verschmelzung der einzelnen Komponenten zu einem Cluster ist jedoch

ein minimales Abweichen innerhalb der Reihenfolge, zwecks Erhalt der logischen Zusammenhahnge

durchaus mohglich. Diese Testreihe soll an dieser Stelle folgende Pruhfungen enthalten:

Diplomarbeit von Bogdanovic Theodor für die HFU 159

FullOpenSourceVirtualization

• Netzwerk:

◦ Nachweis der Switching – Funktionen der Bridge.

◦ Pruhfen der Isolation der einzelnen Netzwerke untereinander.

◦ Pruhfung auf Anwendung von netzwerkseitigem QoS seitens oVirt.

• Virtualisierung:

◦ Pruhfung auf Anwendung von CPU- seitigem QoS seitens oVirt.

◦ Minimaler Nachweis der Live – Migration inklusive des Verhaltens bei Umschaltung auf
Maintenance Modus.

◦ Pruhfung auf Anwendung der definierten Affinitahtsgruppen seitens oVirt.

• Storage:

◦ Erbringung des Nachweises auf tatsahchliche Verteilung der virtuellen Disks auf beide
Nodes. Dies Schliesst die ISO – Files mit ein.

◦ Pruhfung auf Anwendung von Storage- seitigem QoS seitens oVirt.

 9.4 Expliziter Ausschluss von möglichen Tests

Einige Test sollen an dieser Stelle klar von den Testreihen ausgeschlossen werden. Das pruhfen dieser

Punkte ist technisch nicht notwendig, da sie meistens in Abhahngigkeit mit anderen zu pruhfenden

Punkten steht oder die Pruhfung ein hohes Risiko mit sich bringt einen schwerwiegenden und

irreparablen Schaden zu erzeugen. Die wichtigsten hier explizit ausgeschlossenen Tests sind:

• Test auf Ausfallsicherheit der beiden RAID 5 – Verbuhnde auf den GlusterFS Nodes; (Risiko eines

nicht wiederherstellbaren Schadens ist zu hoch.)

• Tests mit der kompletten Trennung eines GlusterFS Node vom Cluster sind nicht notwendig, da

zwischen den Nodes keine Ausfallsicherheit besteht; (Risiko eines irreparablen Schadens ist zu

hoch.)

• Auslastungstests mit einer uhberdimensionierten CPU Anzahl einer VM im allgemeinen, aber

auch beim Migrieren sind nur schwer realsierbar, da KVM an dieser Stelle eine hohe

virtualisierungsanzahl an virtuellen CPU's unterstuhtzt. Hier genuhgen RAM bezogene Tests, da

das Unberschreiten des maximalen RAM's deaktiviert wurde.

• Test der mohglichen Maximalauslastung der einzelnen Nodes wahhren denkbar jedoch nicht

reprahsentativ, da dies von einem klaren Design der maximalen Ressourcenzuteilung der VM's

abhahngt, hierfuhr aber noch keine Design – Entscheidung getroffen wurde und auch nicht

expliziter Bestandteil dieser Arbeit ist.

Diplomarbeit von Bogdanovic Theodor für die HFU 160

FullOpenSourceVirtualization

 9.5 Beginn der Testreihe 1

Diese Testreihe orientiert sich stark am Ausfallmanagement der Bereiche Netzwerk und

Virtualisierungsnodes. Dabei werden die Ausfahlle teils mit netzwerkseitigem Trennen der Ethernet

Anschluhsse und teils mit direktem „harten“ Ausschalten der Nodes simuliert. Die nachfolgende Grafik

soll mohgliche Trenn- bzw. Ausschaltpunkte aufzeigen.

Diplomarbeit von Bogdanovic Theodor für die HFU 161

Abbildung 93: Tests, Testreihe 1: Das Trenn- bzw. Abschaltschema

FullOpenSourceVirtualization

 9.5.1 Testprotokoll: Trennen von Ethernet – Port (XOR – Mgmt – Net)

 9.5.1.1 Testprotokoll: Trennung von XOR – Bonding Port 1 bei gfsn1.mgmtdom

Testname: TR1-T0001 Abhängigkeiten: Keine speziellen, oVirt + Node GlusterFS 1

Parameter: Cluster noch im Leerlauf, keine VM's aktiv. Verwendete Tools: Keine speziellen, oVirt selbst

Ablauf des Tests: Der Cluster ist in Betrieb, es wird der Ethernet – Port 1 des Storage – Nodes gfsn1.mgmtdom entfernt.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Rechner mit Browser vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Kein Unterbruch zum Node, der
zweite Ethernet – Port arbeitet weiter.

Modifikationen Testablauf: -----

Spezielles: -----

Resultat des Tests: OK Bemerkungen: Der Node erkannte den Fehler und meldete ihn. Der reguläre
Betrieb war weiterhin möglich, da ein Ethernet – Port noch vorhanden war und das
entsprechende Kernel – Modul das Balancing auf einen Port reduzierte. Im
Realbetrieb wäre der Traffic der vorher über Port 1 lief von Port 2 übernommen
worden. Der Node ist weiterhin im UP – Zustand.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 162

Abbildung 94: Tests / TR1-T0001-1: Der Ethernet - Port 1
wurde im laufenden Betrieb von gfsn1.mgmtdom
ausgestreckt.

Abbildung 95: Tests / TR1-T0001-2: oVirt hat den Unterbruch sofort erkannt und
ihn in der Statusleiste gemeldet. Grafisch wurde auch der aktuelle Zustand
abgebildet.

FullOpenSourceVirtualization

 9.5.1.2 Testprotokoll: Trennung von XOR – Bonding Port 1 bei ovn3.mgmtdom

Testname: TR1-T0002 Abhängigkeiten: Keine speziellen, oVirt + Node OVN 3

Parameter: Cluster noch im Leerlauf, keine VM's aktiv. Verwendete Tools: Keine speziellen, oVirt selbst

Ablauf des Tests: Der Cluster ist in Betrieb, es wird der Ethernet – Port 1 des Virtualisierungsnodes ovn3.mgmtdom
entfernt.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Rechner mit Browser vorhanden ist.

Verkettung / Ähnlich zu: TR1-T0001

Erwartetes Ergebnis: Kein Unterbruch zum Node, der
zweite Ethernet – Port arbeitet weiter

Modifikationen Testablauf: -----

Spezielles: -----

Resultat des Tests: OK Bemerkungen: Der Node erkannte den Fehler und meldete ihn. Der reguläre
Betrieb war weiterhin möglich, da ein Ethernet – Prot noch vorhanden war und das
entsprechende Kernel – Modul das Balancing auf einen Port reduzierte. Im
Realbetrieb wäre der Traffic der vorher über Port 1 lief von Port 2 übernommen
worden. Der Node ist weiterhin im UP – Zustand.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 163

Abbildung 96: Tests / TR1-T0002-1: Der Ethernet -
Port 1 wurde im laufenden Betrieb von
ovn3.mgmtdom ausgestreckt.

Abbildung 97: Tests / TR1-T0002-2: oVirt hat den Unterbruch sofort erkannt und ihn in der
Statusleiste gemeldet. Grafisch wurde auch der aktuelle Zustand abgebildet.

FullOpenSourceVirtualization

 9.5.2 Testprotokoll: Trennen von VM – Netzwerk Port (LACP)

Testname: TR1-T0003 Abhängigkeiten: Lauffahhige VM's mit Netwerkanbindung:
• STATIC_debian_Testsys_1
• STATIC_debian_Testsys_1
• STATIC_debian_Testsys_1

Alle drei Maschinen Laufen auf ovn4.mgmtdom.

Parameter: Cluster aktiv, drei VM's sind in Betrieb. Verwendete Tools: tcpdump auf pfSense Firewall uhber SSH –
Verbindung. Ping auf VM's.

Ablauf des Tests: Die drei VM's werden uhber das VM – Netzwerk zu je drei unterschiedlich Zielen von Node OVN 4 Pingen:
• STATIC_debian_Testsys_1 → google.ch
• STATIC_debian_Testsys_2 → hbu.ch
• STATIC_debian_Testsys_3 → distrowatch.com

Es wird ein Ping – Auszug aus dem fuhr jede VM zustahnden Interface von pfSense gezogen. Am Ende werden alle Interfaces
bis auf eines von pfSense im laufenden Ping – Betrieb getrennt.

Messpunkte / Standort der Messung: Home – PC uhber SSH zu pfSense.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Kein Unterbruch, das Pingen sollte
uhber ein Interface noch mohglich sein, die anderen werden
keine Daten mehr liefern.

Modifikationen Testablauf: -----

Spezielles: Die hier aufgefuhhrten Auszuhge sind lediglich stark verkuhrzte Zusammenfassungen, die Originale sind auf dem
beiliegenden Datentrahger unter → …DATA/Tests/Testreihe1/TR1-T0003 zu finden.

Diplomarbeit von Bogdanovic Theodor für die HFU 164

Abbildung 98: Tests / TR1-T0003-1: STATIC_debian_Testsys_1 Ping in Richtung
--> google.ch über pfSense Iface igb9, alle Ifaces noch aktiv.

Abbildung 99: Tests / TR1-T0003-1: STATIC_debian_Testsys_2 Ping in Richtung
--> hbu.ch über pfSense Iface igb11, alle Ifaces noch aktiv.

FullOpenSourceVirtualization

Diplomarbeit von Bogdanovic Theodor für die HFU 165

Abbildung 101: Tests / TR1-T0003-2: Trennen der Ifaces igb9 und igb 10 von der pfSense
Firewall in laufendem Betrieb. Iface igb11 bleibt Online.

Abbildung 102: Tests / TR1-T0003-2: Start tcpdump auf igb10 und igb9 nach
Trennung der Ifaces.

Abbildung 100: Tests / TR1-T0003-1: STATIC_debian_Testsys_3 Ping in
Richtung --> distrowatch.com über pfSense Iface igb10, alle Ifaces noch aktiv.

FullOpenSourceVirtualization

Resultat des Tests: OK Bemerkungen: Wie in dieser Screenshot Serie zu sehen ist, verteilt LACP den
Traffic auf alle drei Interfaces. Beim Ausfall von zwei Ifaces fand kein Unterbruch
statt, der Traffic wurde von pfSense und dem Node neu ausgehandelt und über
igb11 geleitet.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: Die Screenshots zeigen je nur ein Iface pro VM. Der Nachweis auf effizienteres LACP wird spahter mit Hilfe von
diesen Auszuhgen erbracht.

Diplomarbeit von Bogdanovic Theodor für die HFU 166

Abbildung 103: Tests / TR1-T0003-3: Start tcpdump auf igb11, alle drei ICMP Pings laufen nun über das eine
noch aktive Iface igb11.

Abbildung 104: Tests / TR1-T0003-3: Dieser Screenshot wurde von
STATIC_debian_Testsys_1 während dem "schnellen" Trennen der Ifaces 9 und 10
erstellt. Die Aufzeichnung zeigt den Zeitpunkt kurz vor und nach dem Trennen. Wie zu
sehen ist, fand kein Unterbruch statt.

FullOpenSourceVirtualization

 9.5.3 Testprotokoll: Manuelles Fencing auf der theoretischen Basis von Semi-Automatic-HA

Testname: TR1-T0004 Abhängigkeiten: Keine speziellen, oVirt + Node OVN 3

Parameter: Cluster-Level-Middle mit den beiden Nodes OVN
2 / 3. Hier wurde eine temporahre VM namens DA_Testsys_1
zum testen erzeugt, um bei schwerwiegenden Schahden nicht
eine der bestehenden STATIC_ Maschinen zu verlieren.
Hierbei handelt es sich um eine weitere VM aus der gleichen
Vorlage wie die anderen ohne irgendwelche Limitierungen.

Verwendete Tools: Keine speziellen, oVirt selbst

Ablauf des Tests: DA_Testsys_1 wird auf ovn3.mgmtdom in betrieb genommen. Und mit HA Privilegien ausgestattet.
Danach wird der Node ovn3.mgmtdom per Power – Button gewaltsam ausgeschaltet. Hierauf sollte oVirt mit der
Neuklassifizierung des Node beginnen und ihm in den Status Non Operational setzen. Nachfolgend, wenn alle Versuche ihn
neu zu starten gescheitert sind, kann er per Hand in den Staus Non Responsive versetzt. Ab jetzt geschieht nichts bis das
manuelle Fencing initialisiert wird. Wird es initialisiert, so sollte die VM auf den Cluster – Partner ovn2.mgmtdom neu
gestartet werden.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Rechner mit Browser vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: VM DA_Testsys_1 sollte nach dem
manuellen Fencing sauber auf ovn2.mgmtdom neu gestartet
werden.

Modifikationen Testablauf: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 167

Abbildung 105: Tests / TR1-T0004-1: Host ovn3.mgmtdom wurde gewaltsam ausgeschaltet und ist per Hand
in den Modus Non Responsive gesetzt worden. Nachfolgend wurde über das Kontextmenü das manuelle
Fencing initialisiert. Nun beginnt oVirt mit der Kalkulieren des HA für diesen Cluster. Alle Schritte sind in
der grauen Statusleiste der Abbildung als Ereignis zu erkennen.

FullOpenSourceVirtualization

Resultat des Tests: OK Bemerkungen: Das manuelle Fencing verlief wie gewünscht, die VM wurde nach
initialisieren des manuellen Fencing ordnungsgemäss auf ovn2.mgmtdom neu
gestartet. Nach dem Neustart von ovn3.mgmtdom tauchte die VM zwar als nicht
nutzbarer Zombie in der Liste wieder auf, da vermutlich das Locking von
ovn3.mgmtdom nicht vom Storage entfernt wurde, jedoch erkannte oVirt dies ohne
Weiteres und löschte sie wieder aus der Liste. Die VM funktionierte nach dem
Neustart ohne Probleme wie gewünscht.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: Ein gewaltsam ausgeschalteter Host hat etwas Schwierigkeiten beim erneuten Einbinden in den Cluster. Erst
beim zweiten Aktivierungsversuch liess er sich wieder einbinden. Ansonsten verlief der Eingriff problemlos.

Diplomarbeit von Bogdanovic Theodor für die HFU 168

Abbildung 106: Tests / TR1-T0004-2: Nach initialisieren des manuellen Fencing, wurde die VM neu gestartet
und läuft nun auf ovn2.mgmtdom.

FullOpenSourceVirtualization

 9.5.4 Testprotokoll: Trennen der Netzwerkverbindung der Engine im Betrieb

Testname: TR1-T0005 Abhängigkeiten: Keine speziellen, oVirt selbst

Parameter: Alle Cluster sind Online und alle Test – VM's sind
in Betrieb.

Verwendete Tools: oVirt selbst + netstat + Ping

Ablauf des Tests: Im Laufenden Betrieb soll die Netzwerkverbindung der Engine getrennt werden. Dies geschieht durch
herausziehen des Netzwerkkabels an der Engine selbst. Die Trenndauer soll hier 5 Minuten betragen.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Rechner mit Browser und Konsole (SSH) vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Die Engine selbst kann nach dieser
Aktion nicht mehr Kontaktiert werden um die Ereignisse auf
dem GUI zu analysieren. Es wird aber erwartet, dass erstens
alles innerhalb des Clusters weiter lahuft (bis auf grafische
Konsole; SPICE) wie vor der Trennung und zweitens, dass
sich die Engine wieder ohne Schwierigkeiten selbst einbindet
beim Wiederherstellen der Verbindung.

Modifikationen Testablauf: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 169

Abbildung 107: Tests / TR1-T0005-1: Auf gfsn1.mgmtdom wurde per SSH verbunden und
ein netstat aufgerufen. Dieser zeigt klar, dass sämtliche Storageverbindungen noch
bestehen. oVirt selbst ist ebenfalls in der Liste, dies scheint aber an der hohen Timeout -
Phase von netstat zu liegen.

FullOpenSourceVirtualization

Resultat des Tests: OK Bemerkungen: Wie zu erwarten war, funktioniert der Cluster auch ohne die
Engine so weiter wie zum Zeitpunkt der Trennung. Dies soll auch so sein, da der
Clusterbetrieb in den elementarsten Funktionen unabhängig ist von der Engine.
Informationen wie Storage – Zugehörigkeiten werden ohnehin von der Engine an
die Nodes verteilt und vom Storage Pool Master gemanagt. Lediglich der
Verbindungsaufbau zu den SPICE – Konsolen und das HA funktionieren ohne die
Engine nicht.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: Die Engine brauchte nach der Wiederherstellung der Verbindung eine gute Minute um in einem ewig laufendem
Aktualisierungsprozess sahmtliche Informationen zu aktualisieren. Innerhal dieser Zeit war zwar die Oberfahche ereichbar,
aber keine Ressource konnte direkt angesprochen werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 170

Abbildung 108: Tests / TR1-T0005-2: Eine SPICE - Konsole wurde mit Absicht offen gelassen um
von der VM aus in Richtung google.ch zu pingen. Somit ist auch der Erhalt der Netzwerkverbindung
gewährleiste.

Abbildung 109: Tests / TR1-T0005-3: Ein Screenshot der Storage – Ansicht nach dem Einbinden der Engine
(5 minütiger Unterbruch).

FullOpenSourceVirtualization

 9.6 Beginn der Testreihe 2

Diese Testreihe soll sich stark mit den internen Eigenschaften des Cluster – Konstruktes befassen. Hier

wird ausschliesslich mit den Softwarekomponenten gearbeitet, womit dass manuelle Manipulieren der

Hardware komplett wegfahllt. Auch werden hier die neuen VM's welche innerhalb des Kapitels 8

„Realisation“ erstellt worden sind zum Zuge kommen. Es wird versuch die allgemeine Struktur

Netzwerk, Virtualisierung und Storage an dieser Stelle so gut wie mohglich aufrechtzuerhalten.

Diplomarbeit von Bogdanovic Theodor für die HFU 171

FullOpenSourceVirtualization

 9.6.1 Testprotokolle des Bereiches Netzwerk

 9.6.1.1 Testprotokoll: Funktionskontrolle des Switch (Bridge pfSense)

Testname: TR2-T0006 Abhängigkeiten: Minimum 2 VM's + pfSense

Parameter: Funktionierender Cluster mit 2 VM's +
funktionierende Bridge.

Verwendete Tools: ssh

Ablauf des Tests: Es werden zwei VM's in zwei unterschiedlichen Clustern benohtigt. Hierfuhr nehmen wir
DYN_HIGH_openSUSE-42.1_DA-VM-1 → Cluster-Level-Middle und DYN_HIGH_openSUSE-42.1_DA-VM-2 → Cluster-Level-
High. Beide befinden sich in unterschiedlichen Clustern, wobei mindestens ein Unbergang uhber die Link Aggregation
vorhanden ist. Somit ist auch die Funktionsfahhigkeit von LACP im Pruhfbereich enthalten.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Rechner mit Browser und Konsole (SSH) vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Es soll versucht werden sich mittels
SSH auf die jeweiligen VM's untereinander zu verbinden.
Hierbei muss beide Male die Link Aggregation uhberwunden
werden und dies noch mit einem sensiblen und hoch
sicheren SSH – Verfahren.

Modifikationen Testablauf: -----

Spezielles: -----

Resultat des Tests: OK Bemerkungen: Verbindungen per SSH in beide Richtungen durch die Link
Aggregation waren ohne weiteres möglich.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 172

Abbildung 110: Tests / TR2-T0006-1: Funktionierende Athentifizierung und
Anmeldung an da-vm-2

Abbildung 111: Tests / TR2-T0006-2: Funktionierende Athentifizierung und
Anmeldung an da-vm-1

FullOpenSourceVirtualization

 9.6.1.2 Testprotokolle: Isolationsfähigkeit der Regelsätze

 9.6.1.2.1 Testprotokoll: Kein Zugriff auf privaten Sektor (LAN) von virtdom aus

Testname: TR2-T0007 Abhängigkeiten: Eine VM erforderlich

Parameter: Funktionierender Cluster mit 1 VM + Aktive
Sperrregeln.

Verwendete Tools: ssh

Ablauf des Tests: Von DYN_HIGH_openSUSE-42.1_DA-VM-2 → Cluster-Level-High soll versucht werden eine Verbindung zu
openelec.localdom (IPTV des Autors) herzustellen. Die Regelsahtze fuhr die restlichen Nodes sind identisch, womit dieses
Testergebnis auf alle adaptiert werden kann.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Rechner mit Browser und Konsole (SSH) vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Die Verbindung soll nicht zustande
kommen und muss nach 1 Minute manuell abgebrochen
werden, falls bis dahin kein Timeout erfolgt.

Modifikationen Testablauf: -----

Spezielles: -----

Resultat des Tests: OK Bemerkungen: -----

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 173

Abbildung 112: Tests / TR2-T0007-1: Die allgemeine Regel, welche allen VM's den Zugang zum privaten Teil des
Netzwerkes verweigert (gilt auch für WLAN1).

Abbildung 113: Tests / TR2-T0007-2: Wie zu erwarten lief die Verbindung in ein Timeout

FullOpenSourceVirtualization

 9.6.1.2.2 Testprotokoll: Kein Zugriff auf mgmtdom von virtdom aus

Testname: TR2-T0008 Abhängigkeiten: Eine VM erforderlich

Parameter: Funktionierender Cluster mit 1 VM + Aktive
Sperrregeln.

Verwendete Tools: ssh

Ablauf des Tests: Von DYN_HIGH_openSUSE-42.1_DA-VM-2 → Cluster-Level-High soll versucht werden eine Verbindung zu
ovirt-mgmtdom (Engine) herzustellen. Die Regelsahtze fuhr die restlichen Nodes sind identisch, womit dieses Testergebnis auf
alle adaptiert werden kann.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Rechner mit Browser und Konsole (SSH) vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Die Verbindung soll nicht zustande
kommen und muss nach 1 Minute manuell abgebrochen
werden, falls bis dahin kein Timeout erfolgt.

Modifikationen Testablauf: -----

Spezielles: DNS – Auflohsung in Richtung ovirt-mgmt.mgmtdom ist mohglich.

Resultat des Tests: OK Bemerkungen: -----

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 174

Abbildung 114: Tests / TR2-T0008-1: Die allgemeine Regel, welche allen VM's den Zugang zu mgmtdom verweigert.

Abbildung 115: Tests / TR2-T0008-2: Wie zu erwarten lief die Verbindung in ein Timeout

FullOpenSourceVirtualization

 9.6.1.2.3 Testprotokoll: Kein Zugriff auf privaten Sektor (LAN) von mgmtdom aus

Testname: TR2-T0009 Abhängigkeiten: Eine VM erforderlich

Parameter: Funktionierender Cluster mit 1 VM + Aktive
Sperrregeln.

Verwendete Tools: ssh

Ablauf des Tests: Von gfsn1.mgmtdom soll versucht werden eine Verbindung zu openelec.localdom herzustellen. Die
Regelsahtze fuhr die restlichen Nodes sind identisch, womit dieses Testergebnis auf alle adaptiert werden kann.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Rechner mit Browser und Konsole (SSH) vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Die Verbindung soll nicht zustande
kommen und muss nach 1 Minute manuell abgebrochen
werden, falls bis dahin kein Timeout erfolgt.

Modifikationen Testablauf: -----

Spezielles: DNS – Auflohsung in Richtung openelec.localdom ist mohglich.

Resultat des Tests: OK Bemerkungen: -----

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 175

Abbildung 116: Tests / TR2-T0009-1: Die allgemeine Regel, welche allen Nodes den Zugang zum privaten Sektor
verweigert.

Abbildung 117: Tests / TR2-T0009-2: Wie zu erwarten lief die Verbindung in ein Timeout

FullOpenSourceVirtualization

 9.6.1.2.4 Testprotokoll: Kein Zugriff auf virtdom von mgmtdom aus

Testname: TR2-T0010 Abhängigkeiten: Eine VM erforderlich

Parameter: Funktionierender Cluster mit 1 VM + Aktive
Sperrregeln.

Verwendete Tools: ssh

Ablauf des Tests: Von gfsn1.mgmtdom soll versucht werden eine Verbindung zu Infraserv1.virtdom herzustellen. Die
Regelsahtze fuhr die restlichen Nodes sind identisch, womit dieses Testergebnis auf alle adaptiert werden kann.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Rechner mit Browser und Konsole (SSH) vorhanden ist.

Verkettung / Ähnlich zu: Ist ahhnlich wie TR2-T0009. Regeln sind identisch, weswegen auf Abbildung 116 referenziert wird.

Erwartetes Ergebnis: Die Verbindung soll nicht zustande
kommen und muss nach 1 Minute manuell abgebrochen
werden, falls bis dahin kein Timeout erfolgt.

Modifikationen Testablauf: -----

Spezielles: DNS – Auflohsung in Richtung Infraserv1.virtdom ist NICHT mohglich.

Resultat des Tests: OK Bemerkungen: -----

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 176

Abbildung 118: Tests / TR2-T0010-2: Wie zu erwarten lief die Verbindung in ein Timeout

FullOpenSourceVirtualization

 9.6.1.3 Testprotokoll: Prüfung auf Anwendung von QoS auf das VM – Netzwerk

Testname: TR2-T0011 Abhängigkeiten: Zwei VM's erforderlich

Parameter: Funktionierender Cluster mit 2 VM mit
unterschiedlichen QoS Profilen. Die Genauen Spezifikationen
des QoS sind unter Punkt 8.9.1.1.2 nachlesbar.

Verwendete Tools: ftp

Ablauf des Tests: Mit folgenden beiden VM's; DYN_HIGH_openSUSE-42.1_DA-VM-1 → Cluster-Level-Middle und
DYN_HIGH_openSUSE-42.1_DA-VM-3 → Cluster-Level-High soll das gleiche ISO – File Heruntergeladen werden. Beim File
handelt es sich um das Net – Installationsimage von openSUSE 42.1 auf der Adresse →
ftp://mirror.switch.ch/mirror/opensuse/opensuse/distribution/leap/42.1/iso/openSUSE-Leap-42.1-NET-
x86_64.iso

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo eine Konsole (SSH) vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Die Downloadzeiten sollten sich
markant voneinander unterscheiden.

Modifikationen Testablauf: -----

Spezielles: Der Disk QoS auf DYN_HIGH_openSUSE-42.1_DA-VM-3 wird temporahr auf _HIGH gesetzt.

Resultat des Tests: OK Bemerkungen: Die Limitierungen unter Punkt 8.9.1.1.2 wurden für das interne
Netzwerk designt. Hier wurde aber aus dem Internet heruntergeladen, wo die
tiefste QoS – Limitierung immer noch doppelt so hoch ist wie die max. Download
– Rate. Der Download aus dem Internet wurde gewählt, da er weit stabiler ist als
die momentane Netzauslastung im privaten Sektor. Um dennoch ein sichtbares
Ergebnis zu erhalten, wurde für diesen Test die _MIN – Limitierung temporär auf
Eingehend → 10 Mbit/s allgemein und Burst auf 5 MB gesetzt. Der Test ist
weiterhin gültig, da das Anwenden von QoS erwiesen ist und die Adaption auf das
interne QoS – Design gleich funktioniert, einfach mit höheren Datenraten.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 177

Abbildung 119: Tests / TR2-T0011-1: Hier wurde der Download ohne Limitierung des
Netzwerks durchgeführt.

Abbildung 120: Tests / TR2-T0011-2: Hier wurde der Download mit spezieller Limitierung
des Netzwerks durchgeführt.

FullOpenSourceVirtualization

 9.6.2 Testprotokolle des Bereiches Virtualisierung

 9.6.2.1 Testprotokoll: Prüfung auf Anwendung des CPU – QoS

Testname: TR2-T0012 Abhängigkeiten: Zwei VM's erforderlich

Parameter: Funktionierender Cluster mit 2 VM's mit unterschiedlichen QoS
Profilen. Die Genauen Spezifikationen des QoS sind unter Punkt 8.9.1.1.3
nachlesbar.

Verwendete Tools: SSH, Script stress.sh

Ablauf des Tests: Mit diesen beiden VM's; DYN_HIGH_openSUSE-42.1_DA-VM-2 und DYN_HIGH_openSUSE-42.1_DA-VM-3
soll das eigens hierfuhr erstellte Stresstest Skript stress.sh ausgefuhhrt werden. Dabei gelten folgende Limitierungen fuhr die
VM's:

• DYN_HIGH_openSUSE-42.1_DA-VM-2 → lahuft auf ovn1.mgmtdom und ist komplett unlimitiert.
• DYN_HIGH_openSUSE-42.1_DA-VM-3 → lahuft auf ovn1.mgmtdom und ist CPU- seitig auf 30% limitiert.

Beide Test werden nacheinander durchgefuhhrt, um die gleichen Host – CPU Bedingungen zu erzeugen.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo eine Konsole (SSH) vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Das Script startet 4 Prozesse gleichzeitig fuhr 30
Sekunden, welche aus /dev/random lesen und auf die Disk schreiben. Dabei
vergleicht es die Grohsse der erzeugten vier Files und addiert sie zusammen. Da
dieser Vorgang sehr CPU intensiv ist, sollte bei einer limitierten CPU das
Erzeugen des Random lahnger dauern, was sich bei konstanter Zeit auf die
Grohsse des Ergebnisses auswirkt. Da die Nodes aber zur Zeit kaum ausgelastet
sind, wird hier mit einer minimalen Diskrepanz gerechnet.

Modifikationen Testablauf: -----

Spezielles: Keine der beiden oben genanten VM's nutzt den Zufallsgenerator des Host. Beide vCPU's muhssen hier selber
arbeiten.

Resultat des Tests: OK Bemerkungen: Für beide VM's wurde der Stresstest 3x Mal wiederholt. Dabei
konnten praktisch drei identische Ergebnisse erzielt werden. Somit hat die
Limitierung durchaus einen Einfluss auf die zu nutzenden CPU – Ressourcen.
Jedoch müsste für stärkere Diskrepanzen ein komplexeres Testverfahren genutzt
werden und die Testbedingungen auf dem Node müssten für einen realistischen
Test so modifiziert werden, dass weit mehr Auslastung herrscht.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: Das Script stress.sh ist auf dem Datentrahger unter …/DATA/Tests/Testreihe2/TR2-T0012 zu finden.

Diplomarbeit von Bogdanovic Theodor für die HFU 178

Abbildung 121: Tests / TR2-T0012-1: Die unlimitierte
VM konnte in 30s 56MB an Random - Daten
generieren.

Abbildung 122: Tests / TR2-T0012-2: Die limitierte VM
konnte in 30s 53MB an Random - Daten generieren.

FullOpenSourceVirtualization

 9.6.2.2 Testprotokoll: Nachweis der Live – Migration mit Miteinbezug des Maintenance Mode

Testname: TR2-T0013 Abhängigkeiten: Eine VM erforderlich

Parameter: Funktionierender Cluster mit 1 VM mit unterschiedlichen QoS
Profilen. Die Genauen Spezifikationen des QoS sind unter Punkt 8.9.1.1.3
nachlesbar.

Verwendete Tools: oVirt selbst

Ablauf des Tests: Zu diesem Zeitpunkt wird mindestens eine VM auf Node ovn1.mgmtdom in Betrieb sein, wahhrend der
Node in den Maintenance – Modus versetzt wird.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Browser vorhanden ist.

Verkettung / Ähnlich zu: Dieser Test erweist zugleich die allgemeine Migrationsfahhigkeit des Aufbaus.

Erwartetes Ergebnis: Es wird erwartet, dass nach umschalten des Node
ovn1.mgmtdom in den Maintenance – Modus, die VM auf den Nachbarnode
innerhalb des Clusters verschoben wird.

Modifikationen Testablauf: -----

Spezielles: -----

Resultat des Tests: OK Bemerkungen: -----

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 179

Abbildung 123: Tests / TR2-T0013-1: Der Zustand auf ovn1.mgmtdom vor der Migration / des
Übergangs in den Wartungsmodus.

Abbildung 124: Tests / TR2-T0013-2: Der eigentliche Migrationsvorgang nach einleiten des Wartungsmodus auf
ovn1.mgmtdom.

Abbildung 125: Tests / TR2-T0013-3: Auszug aus dem Ereignisprotokoll von oVirt, wo die einzelnen Schritte ersichtlich
sind.

FullOpenSourceVirtualization

 9.6.2.3 Testprotokoll: Prüfung auf Anwendung der Affinitätsgruppen

Testname: TR2-T0014 Abhängigkeiten: Zwei VM's erforderlich

Parameter: Funktionierender Cluster mit 2 VM's mit unterschiedlichen QoS
Profilen.

Verwendete Tools: oVirt selbst

Ablauf des Tests: Um diesen Test etwas kompakter zu halten, wir hier lediglich versuch zwei VM's welche sich in einer
positiven Affinitahtsgruppe befinden, voneinander zu trennen. Das Funktionsprinzip ist hier in umgekehrter Betrachtung
dasselbe wie beim Starten der VM's. Somit kann dieses Testergebnis auf beide Seiten ahquivalent angewendet werden. Fuhr
diesen Test wird versucht folgende VM aus der Affinitaht weg zu migrieren:

• DYN_HIGH_openSUSE-42.1_DA-VM-3 weg von ovn4.mgmtdom zu ovn1.mgmtdom

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein Browser vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Da beide VM's in einer positiven Bindung zueinander
stehen, sollte oVirt die Migration einer von ihnen mit einer Fehlermeldung
ablehnen.

Modifikationen Testablauf: -----

Spezielles: -----

Resultat des Tests: OK Bemerkungen: Zugegeben, die Meldungen sind nicht wirklich aussagekräftig und
könnten einen oVirt – Neuling im ersten Moment verwirren, da sie nicht spezifisch
auf die Affinitätsgruppen als ablehnende Quelle hindeuten. Jedoch funktioniert die
Sicherung hervorragen und ein Affinitätsbruch ist nicht erzwingbar solange die
Regel auf Hard steht.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 180

Abbildung 126: Tests / TR2-T0014-1: Ereignisanzeige von oVirt; die Migration wurde abgelehnt, da sie zu einem
Affinitätsbruch führt.

Abbildung 127: Tests / TR2-T0014-1: Taskanzeige von oVirt; Der Migrationsprozess wurde zuerst
als i.O. klassifiziert und bei der nachfolgenden Richtlinienprüfung als ungültig abgelehnt.

FullOpenSourceVirtualization

 9.6.3 Testprotokolle des Bereiches Storage

 9.6.3.1 Testprotokolle zur Prüfung auf Verteilung der Daten innerhalb von GlusterFS

 9.6.3.1.1 Testprotokoll: Prüfung auf Verteilung der Daten des Master – Storage

Testname: TR2-T0015 Abhängigkeiten: GlusterFS Nodes

Parameter: Lauffahhiger GlusterFS – Verbund. Verwendete Tools: du

Ablauf des Tests: Es wird auf die beiden GlusterFS Nodes per SSH zugegriffen und mittels des Kommandozeilen – Tools du
ein Auszug aus den Bricks gezogen, welcher von den Verzeichnissen her identisch sein sollte. Jedoch sollten
Grohssenunterschiede innerhalb der gleichnamigen Verzeichnisse vorhanden sein, da ja die effektiven Rohdaten auf
unterschiedlichen Maschinen gespeichert werden.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein SSH Konsolenclient vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Es sollten unterschiedliche Werte hinsichtlich der
Speicherplatzbelegung der gleichnamigen Verzeichnisse erschlich sein.

Modifikationen Testablauf: -----

Spezielles: Verzeichnis lokal auf Nodes: /storage/brick(1 bzw. 2)/20d7808c-90f9-49bd-90c4-0aaee13d5fed/images

Resultat des Tests: OK Bemerkungen: Wie zu sehen ist, werden die Daten auf beiden Nodes verteilt. Die
leichten Diskrepanzen welche sich bei einigen gleichnamigen Verzeichnissen
zeigen, sind Snapshot von VM's welche durch GlusterFS ausbalanciert
wurden.Weswegen der Node 1 beim Speichern so stark bevorzugt wird, konnte
nicht ermittelt werden.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 181

Abbildung 128: Tests / TR2-T0015-1: Der effektive vergleich der beiden Verzeichnisstrukturen auf den GlusterFS
Nodes.

FullOpenSourceVirtualization

 9.6.3.1.2 Testprotokoll: Prüfung auf Verteilung der ISO's auf beide Nodes

Testname: TR2-T0016 Abhängigkeiten: GlusterFS Nodes

Parameter: Lauffahhiger GlusterFS Verbund. Verwendete Tools: du, ls

Ablauf des Tests: Der Ablauf des Tests ist identisch mit TR2-0015. Hier wir NFS als Kontaktpunkt zur Datenuhbermittlung
genutzt, somit ist fuhr alle Nodes nur ein Schnittstelle sichtbar. Jedoch kuhmmert sich GlusterFS eigenstahndig um das
Balancieren der ISO's. Hier wird noch zusahtzlich mit dem Befehl ls -l der besseren Unbersicht halber gearbeitet.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo ein SSH Konsolenclient vorhanden ist.

Verkettung / Ähnlich zu: TR2-T0015

Erwartetes Ergebnis: Es sollten unterschiedliche Werte hinsichtlich der
Speicherplatzbelegung der gleichnamigen Verzeichnisse erschlich sein.

Modifikationen Testablauf: -----

Spezielles: Verzeichnis lokal auf Nodes: /storage/ISO_STORE(1 bzw. 2)/8f62618b-7910-4987-a6a2-
052b8b083bfa/images/11111111-1111-1111-1111-111111111111

Resultat des Tests: OK Bemerkungen: -----

Mögliche Konsequenzen / Änderungen: -----

Spezielles: -----

Diplomarbeit von Bogdanovic Theodor für die HFU 182

Abbildung 129: Tests / TR2-T0016-1: Auszug der ISO's aus ISO_STORE1 auf gfsn1.mgmtdom.

Abbildung 130: Tests / TR2-T0016-2: Auszug der ISO's aus ISO_STORE2 auf gfsn2.mgmtdom.

FullOpenSourceVirtualization

 9.6.3.2 Testprotokoll: Prüfung auf Anwendung von QoS auf Storage

Testname: TR2-T0017 Abhängigkeiten: Zwei VM's erforderlich

Parameter: Funktionierender Cluster mit 2 VM's mit unterschiedlichen QoS
Profilen. Die Genauen Spezifikationen des QoS sind unter Punkt 8.9.1.1.3
nachlesbar.

Verwendete Tools: SSH, Script disktest.sh

Ablauf des Tests: Mit diesen beiden VM's; DYN_HIGH_openSUSE-42.1_DA-VM-2 und DYN_HIGH_openSUSE-42.1_DA-VM-3
soll das eigens hierfuhr erstellte Stresstest Skript disktest.sh ausgefuhhrt werden. Dabei gelten folgende Limitierungen fuhr die
VM's:

• DYN_HIGH_openSUSE-42.1_DA-VM-2 → lahuft auf ovn1.mgmtdom und ist komplett unlimitiert.
• DYN_HIGH_openSUSE-42.1_DA-VM-3 → lahuft auf ovn1.mgmtdom und ist Storag- seitig auf 30% limitiert.

Beide Test werden nacheinander durchgefuhhrt, um die gleichen Host – Bedingungen zu erzeugen.

Messpunkte / Standort der Messung: Die Verifikation kann von jedem beliebigen Standpunkt im Netzwerk realisiert
werden, wo eine Konsole (SSH) vorhanden ist.

Verkettung / Ähnlich zu: -----

Erwartetes Ergebnis: Das Script startet 8 Prozesse gleichzeitig fuhr 30
Sekunden, welche aus /dev/zero lesen und auf die Disk schreiben. Dabei
vergleicht es die Grohsse der erzeugten acht Files und addiert sie zusammen.
Das lesen aus /dev/zero ist ein relativ schneller Prozess, welcher auch schnell
Daten zum Schreiben liefert. Innerhalb des gleichen Zeitraumes sollte die
limitierte VM wesentlich weniger Daten durch das QoS- limitierte
Storageportal liefern kohnnen, da das Script per KILL – Befehl beendet wird.

Modifikationen Testablauf: -----

Spezielles: Die Messung des Storagezugriffs uhber die Datenmenge in MB mag an dieser Stelle ungewohhnlich wirken, jedoch
kann dies hier angewendet werden, da das Script seine Workerprozesse per Kill beendet. Da weniger Daten durch die
reduzierte Leitung gehen kohnnen, werden diese im virtuellen Disk – Cache lahngerfristig gespeichert. Wenn das Script dann
abrupt abbricht, ist die Diskrepanz auf eine konstante Zeit gerechnet, der Wert welcher durch das QoS ausgebremst wurde.
So kann nicht direkt die Leitungsbegrenzung auf 30% ermittelt werden, jedoch das Vorhandensein einer Diskrepanz welche
auf eine Limitierung hindeutet.

Diplomarbeit von Bogdanovic Theodor für die HFU 183

Abbildung 131: Tests / TR2-T0017-1: Die unlimitierte VM konnte 835MB an Daten in
30s zum Storage Transportieren.

FullOpenSourceVirtualization

Resultat des Tests: OK Bemerkungen: Diese Test wurden drei mal auf den VM's ausgeführt und brachten
auch drei Mal das annähernd gleiche Ergebnis an transportierbaren Daten in MB.

Mögliche Konsequenzen / Änderungen: -----

Spezielles: Das Script disktest.sh ist auf dem Datentrahger unter …/DATA/Tests/Testreihe2/TR2-T0017 zu finden.

Diplomarbeit von Bogdanovic Theodor für die HFU 184

Abbildung 132: Tests / TR2-T0017-1: Die limitierte VM konnte 645MB an Daten in 30s zum Storage
Transportieren.

FullOpenSourceVirtualization

 9.7 Auswertung der Testresultate im gesamten

An dieser Stelle soll ein Vergleich mit den im Pflichtenheft definierten Punkten stattfinden. Hier wird

explizit das Pflichtenheft als Vergleichspunkt herangezogen, da es sahmtliche Anforderungen der

Aufgabenstellung im Detail umfasst. Somit soll nachfolgend in tabellarischer Form auf das Pflichtenheft

referenziert werden, um sahmtliche Punkte mit den vorhandenen Tests zu vergleichen. Es kann Punkte

geben welche nicht expliziert getestet, aber vom rein logischen Standpunkt aus implementiert sein

muhssen, da ansonsten der Aufbau als solches nicht funktionieren wuhrde.

Funktion /
Bedingung

Art der
Anforderung

Wurde das
Ziel Erreicht

Durch welchen Test Bemerkungen

Netzwerksegment

Link Aggregation
Muss Ziel JA TR1-T0003

Kein direkter Test, aber der durchgeführte Test
erzwingt das logische Vorhandensein der
Anforderung als zwingende Abhängigkeit.

Vereinigung in
Bridge
(Switch

Nachbildung)

Muss Ziel JA TR1-T0003

Wurde erfolgreich getestet.

Firewall Regelsätze

Muss Ziel JA

TR2-T0007
TR2-T0008
TR2-T0009
TR2-T0010

Wurde erfolgreich getestet.

Firewall Regelsätze
(Bridge spezifisch) Muss Ziel JA TR2-T0007

Kein direkter Test, aber der durchgeführte Test
erzwingt das logische Vorhandensein der
Anforderung als zwingende Abhängigkeit.

Tabelle 27: Test: Der direkte Vergleich mit den Anforderungen im Pflichtenheft - Netzwerksegment.

Funktion / Bedingung Art der
Anforderung

Wurde das
Ziel

Erreicht

Durch welchen Test Bemerkungen

Virtualisierungssegment

High Availability
(Nachtrag nach

Korrektur)
Muss Ziel JA TR1-T0004

Wurde durch Semi-Automatic-HA ersetzt und
auch entsprechend getestet.

Last – Verteilung
(Nachtrag nach

Korrektur) Muss Ziel JA TR2-T0014

Kein direkter Test, aber der durchgeführte Test
erzwingt das logische Vorhandensein der
Anforderung als zwingende Abhängigkeit. Hier
wird speziell durch Vordefinition der
Affinitätsgruppen die Lastverteilung
vorgenommen (nicht automatisch im Betrieb).

Affinitäts- Gruppen Muss Ziel JA TR2-T0014 Wurde erfolgreich getestet.

Live Migration
Muss Ziel JA TR2-T0013

Wurde erfolgreich getestet, in Kombination mit
dem Maintenance – Modus

Ressourcenbegrenzung
(oVirt - QoS)

Muss Ziel JA
TR2-T0011
TR2-T0012

Wurde erfolgreich getestet.

Tabelle 28: Test: Der direkte Vergleich mit den Anforderungen im Pflichtenheft - Virtualisierungssegment.

Diplomarbeit von Bogdanovic Theodor für die HFU 185

FullOpenSourceVirtualization

Funktion / Bedingung Art der
Anforderung

Wurde das
Ziel

Erreicht

Durch welchen Test Bemerkungen

Storagesegment

Zentralisierung
Muss Ziel JA -----

Kein Test, durch Endergebnis logisch
gewährleistet. In Dokumentation beschrieben.

Lastverteilung
Muss Ziel JA

TR2-T0015
TR2-T0016

Wurde erfolgreich getestet.

Leistungsoptimierung
(Festplatten und

Filesystem)
Muss Ziel JA -----

Dieser Punkt kann nicht spezifisch getestet
werden. Die Erfüllung ist in der Dokumentation
als elementarer Teil der Hauptstudie und als Teil
der Realisation „Storagesegment“ erklärt.

Ausfallsicherheit

Muss Ziel JA -----

Dieser Test ist explizit ausgeschlossen (Punkt
9.4). Seine Erfüllung kann nur theoretisch
angenommen werden, ein Realtest kann nur in
der Praxis im Ernstfall bestätigt werden.

Tabelle 29: Test: Der direkte Vergleich mit den Anforderungen im Pflichtenheft - Storagesegment.

 9.8 Beurteilung der Test in Relation mit dem fertigen Produkt

Die hier durchgefuhhrten Tests bestahtigen die Funktionsweise des Virtualisierungsclusters und der

kompletten Arbeit. Das Endergebnis ist ein funktionierender, robuster und hoch skalierbarer Cluster,

welcher alle, seitens des Autors fuhr den privaten Betrieb erforderlichen Kriterien, erfuhllt. Zwar lahsst

sich erst im Produktivbetrieb unter Vollast ein genaueres Urteil erstellen, jedoch sind die bis jetzt mit

den Testmaschinen gelieferten Ergebnisse hohchst zufriedenstellend. Die Breite an mohglichen OS –

Varianten im Vergleich zum Vorgahngercluster ist weit hohher und der Bedienkomfort wesentlich hohher.

Die Tatsache, dass HA nur uhber eine halbautomatische Lohsung implementiert werden konnte ist zwar

hohchstens als zufriedenstellend einzustufen, jedoch kann diese Lohsung als brauchbar klassifiziert

werden.

Abschliessend kann im direkten Vergleich mit der fertigen Lohsung und den hier erzielten

Testresultaten, aus Sicht des Autors dieser Arbeit das fertige Produkt als getestet und bereit fuhr den

Produktivbetrieb klassifiziert werden.

Diplomarbeit von Bogdanovic Theodor für die HFU 186

FullOpenSourceVirtualization

 10 Dokumentationen und Anleitungen
In den nachfolgenden Punkten soll eine kurze Erklahrung bezuhglich dieser Dokumentation und ihrem

Status als Anleitung allgemein, aber auch spezifisch fuhr Version 3.5 von oVirt folgen.

 10.1 Diese Dokumentation und ihr Status als Anleitung

Die Arbeit wurde spezifisch als Dokumentation fuhr den offiziellen Auftrag seitens der Hohheren

Fachschule User erstellt (HFU). Sie beschreibt alle notwendigen Schritte, welche im Pflichtenheft

definiert wurden, um ein Projekt nach den Vorstellungen des Autors unter Beruhcksichtigung der

Anforderungen, welche seitens der HFU gestellt wurden, zu realisieren. Mit dieser Arbeit wurde eine

Referenzimplementierung eines mohglichen Aufbaus beschrieben, welche aber in reeller Betrachtung

doch stark vom heute uhblichen Standard abweicht. Aus diesem Grund wurde versucht mit einigen

hilfreichen Tipps (Infoboxen), eine leichte Annahherung an das heute uhbliche Design zu erzeugen. Somit

ist diese Dokumentation bis zu einem gewissen Grad als vollwertige Installations- und

Konfigurationsanleitung zu betrachten, welche helfen soll einen oVirt Version 3.5

Virtualisierungscluster zu erstellen und zu betreiben.

 10.2 Die externen Dokumentationen

Die Realisierung dieses Projektes traf eine Umbruchphase innerhalb des oVirt eigenen Wiki –

Projektes, was dazu fuhhrte, dass praktisch alle Suchanfragen uhber Google und ahhnliche Suchmaschinen

zwar Treffer lieferten, diese jedoch stets auf eine 404 – Meldung des Webservers liefen. Es war

sozusagen nur der Main – Teil des Projektes, welcher sich um die Version 3.6 drehte korrekt

erreichbar. Wenn man aber seine Suchanfrage geschickt stellte und die Diskrepanzen zwischen den

Versionen 3.5 und 3.6 kannte, konnte man durchaus nuhtzliche Tipps finden. Jedoch zeigt sich ab Mitte

Februar eine leichte Besserung, welche darauf hindeutet, dass oVirt seine ahlteren Versionen doch nicht

im Stich lahsst. Somit sei mit viel Hoffnung, dass sich dieser zustand noch weiter verbessern wird, auf

die oVirt eigene Dokumentation auf http://www.ovirt.org/documentation/ als weiter Hilfequelle

verwiesen.

Diplomarbeit von Bogdanovic Theodor für die HFU 187

FullOpenSourceVirtualization

 11 Fazits und Abschlussbemerkungen

 11.1 Risikoeinschätzung zu den Versionen 3.5 und 3.6

Bis Version 3.5 ging oVirt bzw. der federfuhhrende Entwickler RedHat einen etwas eigenwilligen Weg in

der Entwicklung, welcher das Produkt spezifisch an seine eigenen Beduhrfnisse binden sollte. Dies

schreckte viele davon ab sich mit oVirt bzw. dem RedHat Virtualization Server zu befassen. Technisch

gesehen stellte dies aber nie ein Problem dar, da die Lohsung zwar in einigen Punkten von den

Konkurrenten abwich, dennoch aber ein stabiles und hoch skalierbars Produkt darstellte. Mit der

Version 3.6 versucht RedHat diese Differenz zu den Konkurrenzprodukten zu minimieren und nahhert

sich den Standard teilweise an. So ist Version 3.6 heute auch offiziell auf Debian lauffahhig und es finden

sich viele Komponenten, welche eine bessere Integration in die heute uhblichen quasi Standards

VMware und openStack ermohglichen sollen. Hinzu kommt noch der seitens oVirt zwar nicht offiziell

vorhanden, aber dennoch angewendete Long Term Support, welcher auch vom Standpunkt „heute“

betrachtet, bis zu Version 3.2 zuruhckreicht. Dennoch wird die Verwendung von Version 3.6 empfohlen,

da mit ihr ein spuhrbares umdenken seitens oVirt bzw. RedHat zu erkennen ist, welches stark in

Richtung Anpassung des Mainstream geht. Dies ist aus Sicht des Autors die zukuhnftig sicherere Wahl

und erspart einem, den muhhsamen Unbergang welchen oVirt mit Version 3.6 zu vollziehen zu versucht.

 11.2 Erhalt des open source Geistes

Um den Geist dieser Arbeit hinsichtlich des im Titel erwahhnten open source aufrecht zu erhalten,

wurde sie grohsstenteils mit Hilfe von open source Tools erstellt. Dabei sind sicherlich die wichtigsten

und heute auch als ausgereift zu betitelnden Tools LibreOffice, GanttProject und das online zugahngliche

draw.io, welches auch als eigenstahndiges und lokal auszufuhhrendes Chrome Add-On erhahltlich ist,

verwendet worden.

 11.3 Abschliessendes Fazit zur Diplomarbeit

Zum Schluss der Arbeit kann der Autor klar sagen, dass es sicherlich eine etwas anstrengendere Arbeit

war, was durch die hohe Seitenzahl wahrscheinlich zu erkennen ist. Jedoch ist das Gesamtergebnis bei

Betrachtung des fertigen Produktes mehr als zufriedenstellend, da ein akzeptabler Ersatz zur

Vorgahngerlohsung geschaffen werden konnte. Klar ist das Fehlen des vollautomatischen High

Availability ein kleiner Wermutstropfen in der Gesamtbetrachtung, jedoch ist es mit der hier

gewahhlten Ersatzlohsung weit mehr, als es mit der Vorgahngerversion jemals hahtte realisiert werden

kohnnen. Bei Betrachtung des Gesamtergebnisses aus einem etwas entfernteren Blickwinkel, kann das

fertige Produkt als ein hoch effizienter, stark skalierbarer und am wichtigsten, funktionierender

Virtualisierungscluster eingestuft werden, wo uhber die vielen Stunden des Suchens nach nicht

dokumentierten Lohsungen hinweggesehen werden kann. Der Autor kann an dieser Stelle klar sagen,

dass er mit dem Ergebnis vollumfahnglich zufrieden ist.

Diplomarbeit von Bogdanovic Theodor für die HFU 188

FullOpenSourceVirtualization

 12 Glossar und Verzeichnisse

 12.1 Glossar

Begriff Erklärung

API Application Programming Interface, ist eine Schnittstelle mit welcher ein Programm, anderen
Programen die Anbindung an ein System ermohglicht.

Chunk / Chunk Size In der Elektronikwelt, ein Datenblock in Bezug auf das speichern auf ein Speichermedium.

Daemon Ein Hintergrunddienst in der Unix – Welt, welcher meist Serverfunktionen uhbernimmt.

GUI / WebGUI Graphical User Interface, ist die Bezeichnung fuhr eine grafische Benutzerschnittstelle, mit der
ein User bequem per Menuhs Funktionen steuern kann.

LOM / LOM - Interface Lights Out Management, stellt eine hardwarenahe Implementierung dar, welche es dem
Benutzer erlaubt, auf ein System (Server) zuzugreifen, auch wenn der Rechner ausgeschaltet ist
oder auch kein Betriebssystem auf dem Server installiert ist.

Maschine In der IT umgangssprachlich fuhr Computer/ Server. In dieser Arbeit wird der Begriff hahufig fuhr
den Verweis auf einen der Server benutzt. Manschmal kann der Begriff auch innerhalb des
Kontextes eines Satzes, ausnahmsweise fuhr eine virtuelle Maschine verwendet werden.

ncurses Hierbei handelt es sich um eine frei Bibliothek, welche das Zeichnen von einfachen Menuhs
innerhalb der Kommandozeile ermohglicht.

NIC Network Interface Card, ist englisch fuhr Netzwerkkarte.

Node Ein Rechnerknoten, welcher Teil eines Verbundes ist und eine spezifische Aufgabe uhbernimmt.
In dieser Arbeit wird der Begriff hahufig fuhr einen der Netzwerk-, Virtualisierungs- oder
Storagerechner verwendet.

RAID Ein Verbund von physischen Festplatten, welche zum Zweck der Redundanz oder der
Geschwindigkeitssteigerung, in diversen Konstellationen miteinander verbunden werden
kohnnen.

RPM Ein Paketformat fuhr RedHat- basierte Linux Distributionen, um darin enthaltene Software
(Binahrformat) zu installieren.

SPICE Ein von RedHat entwickeltes Protokoll, welches grafische Weiterleitung von Desktops
ermohglicht. Hier kann aber neben dem hochauflohsenden Desktop, auch das Audiosignal und
eine belibige Anzahl an

Systemd Ein Startinitialisierungsprogramm, welches heute von den meisten Linux Distributionen, zum
Starten der einzelnen Dienste, wahhrend dem Booten, genutzt wird.

Node Ein Rechnerknoten, welcher Teil eines Verbundes ist und eine spezifische Aufgabe uhbernimmt.
In dieser Arbeit wird der Begriff hahufig fuhr einen der Netzwerk-, Virtualisierungs- oder
Storagerechner verwendet.

VM Ein Akronym fuhr virtuelle Maschine.

Diplomarbeit von Bogdanovic Theodor für die HFU 189

FullOpenSourceVirtualization

 12.2 Abbildungsverzeichnis
Abbildung 1: Kopie des Auftrages Seite 1..7
Abbildung 2: Kopie des Auftrages Seite 2..8
Abbildung 3: Schematischer Hardware – Aufbau aus Sicht des Management- und Storage – Teils..13
Abbildung 4: Schematischer Hardware – Aufbau aus Sicht des Virtual Enviroments...14
Abbildung 5: Schema eines RAID 10 Verbundes auf einen Node bezogen..40
Abbildung 6: Schema eines RAID 5 Verbundes auf einen Node bezogen..41
Abbildung 7: Vergleich von RAID 5 und 10 mi 4 Disks @Quelle: http://louwrentius.com/linux-raid-level-and-chunk-size-the-
benchmarks.html..47
Abbildung 8: Selber erstellte Montageschiene fuhr das Rack..61
Abbildung 9: Beispiel einer Kabelbeschriftung mit dem angewendeten Beschriftungskonzept...62
Abbildung 10: Realisierung des Netzwerksegmentes: Erstellung einer Link Aggregation auf pfSense...65
Abbildung 11: Realisierung des Netzwerksegmentes: Einbinden der Link Aggregation ins System (aktivieren)..............................66
Abbildung 12: Realisierung des Netzwerksegmentes: Einbinden der Bridge ins System (aktivieren)...68
Abbildung 13: Realisierung des Netzwerksegmentes: Screenshot der fertigen Bridge...69
Abbildung 14: Realisierung des Netzwerksegmentes: Konfiguration von VMBRIDGE0..71
Abbildung 15: Realisierung des Netzwerksegmentes: Konfiguration von MGMTBYPASS..72
Abbildung 16: Realisierung des Netzwerksegmentes: Notwendige Regeln um switching zu ermohglichen (independent
Interfaces)...74
Abbildung 17: Realisierung des Netzwerksegmentes: Optischer Vergleich zwischen Theorie und Praxis (Firewall/ gemanagter
Switch)..75
Abbildung 18: Realisierung des Netzwerksegmentes: Optischer Vergleich zwischen Theorie und Praxis (Switch).........................76
Abbildung 19: Realisierung des Storagesegmentes: linke Abb.: Fesplattenmontage, rechte Abb.: Einbau...79
Abbildung 20: Realisierung des Storagesegmentes: Auszug aus /proc/mdstat von Gluster Node 1...81
Abbildung 21: Realisierung des Storagesegmentes: Auszug aus /etc/fstab von Node 1 (gfsn1.mgmtdom)...82
Abbildung 22: Realisierung des Storagesegmentes (Befehl): Betrachtung der fertigen Gluster Volumes..84
Abbildung 23: Realisierung des Virtualisierungssegmentes: Dell PowerEdge Frontansicht...86
Abbildung 24: Realisierung des Virtualisierungssegmentes: Supermicro Barebone Frontansicht..87
Abbildung 25: Realisierung des Virtualisierungssegmentes: 2x Fujitsu Primergy Frontansicht...88
Abbildung 26: Realisierung des Virtualisierungssegmentes: Supermicro Barebone 1HE Frontansicht..88
Abbildung 27: Realisierung des Virtualisierungssegmentes: Gesamtschema einer oVirt Umgebung @
http://www.ovirt.org/Architecture...91
Abbildung 28: Realisierung des Virtualisierungssegmentes: Neu angelegtes Repository - File CentOS-Engine-
Setup_ovirt35.repo...93
Abbildung 29: Realisierung des Virtualisierungssegmentes: Neu angelegtes Repository - File CentOS-Patternfly_oVirt35.repo
..94
Abbildung 30: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; Network Configuration - Screenshot.........95
Abbildung 31: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; Database Configuration - Screenshot........95
Abbildung 32: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; oVirt Engine Configuration - Screenshot. 96
Abbildung 33: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; PKI Configuration - Screenshot....................96
Abbildung 34: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; Apache Configuration - Screenshot............96
Abbildung 35: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; System Configuration - Screenshot.............97
Abbildung 36: Realisierung des Virtualisierungssegmentes: Einrichten der Engine; Abschlussbestahtigung - Screenshot............97
Abbildung 37: Realisierung des Virtualisierungssegmentes: Erstellung eines Data - Centers...100
Abbildung 38: Realisierung des Virtualisierungssegmentes: Der Klick - Weg zum Cluster erstellen...100
Abbildung 39: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Allgemein...101
Abbildung 40: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Optimierung...102
Abbildung 41: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Migrationsrichtlinien.......................103
Abbildung 42: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Cluster-Richlinien..............................104
Abbildung 43: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Konsole...104
Abbildung 44: Realisierung des Virtualisierungssegmentes: Erstellen des Cluster-Storage; Fencing-Richtlinien...........................105
Abbildung 45: Realisierung des Virtualisierungssegmentes: Assistent zu einbinden der Nodes; Allgemein.....................................107
Abbildung 46: Realisierung des Virtualisierungssegmentes: Assistent zu einbinden der Nodes; SPM, Master ist GlusterFS Node
1, der zweite sichtbare Eintrag ist Node 2...108
Abbildung 47: Realisierung des Virtualisierungssegmentes: Assistent zu Einbinden der Nodes; Konsole, Proxy Weiterleitung
fuhr die Darstellungskonsole..108
Abbildung 48: Realisierung des Virtualisierungssegmentes: Einbinden von GlusterFS Storage mittels Assistenten....................111
Abbildung 49: Realisierung des Virtualisierungssegmentes: Einbinden von GlusterFS Storage als ISO Domahne per NFS (hier
die Fertige Konfiguration)..112
Abbildung 50: Realisierung des Virtualisierungssegmentes: Erstellen eines neuen Netzwerkes uhber den Assistenten;
Allgemein...114

Diplomarbeit von Bogdanovic Theodor für die HFU 190

FullOpenSourceVirtualization

Abbildung 51: Realisierung des Virtualisierungssegmentes: Realisierung des Virtualisierungssegmentes: Erstellen eines
neuen Netzwerkes uhber den Assistenten; Cluster wahhlen...114
Abbildung 52: Realisierung des Virtualisierungssegmentes: Erstellen eines neuen Netzwerkes uhber den Assistenten;
Gesamtuhbersicht uhber alle Netzwerke...115
Abbildung 53: Realisierung des Virtualisierungssegmentes: Host-Netzwerk mit Bonding erstellen Teil 1 (ovirtmgmt)............116
Abbildung 54: Realisierung des Virtualisierungssegmentes: Host-Netzwerk mit Bonding erstellen Teil 2 (ovirtmgmt)............116
Abbildung 55: Realisierung des Virtualisierungssegmentes: Host-Netzwerk mit Bonding erstellen Teil 3..116
Abbildung 56: Realisierung des Virtualisierungssegmentes: Host-Netzwerk mit Bonding erstellen Teil 1 (VMnet1)..................117
Abbildung 57: Realisierung des Virtualisierungssegmentes: Host-Netzwerk mit Bonding erstellen Teil 2 (VMnet1)..................118
Abbildung 58: Beginn mit dem Fine - Tuning: Unbersichtsschema des Rohaufbaus...120
Abbildung 59: Beginn mit dem Fine - Tuning: QoS - Speicher; erstellen der globalen Profile...122
Abbildung 60: Beginn mit dem Fine - Tuning: QoS - Speicher; Das fertige Ergebnis..122
Abbildung 61: Beginn mit dem Fine - Tuning: QoS - Netzwerk; Erstellen der globalen Profile...123
Abbildung 62: Beginn mit dem Fine - Tuning: QoS - Netzwerk; Das fertige Ergebnis..123
Abbildung 63: Beginn mit dem Fine - Tuning: QoS - CPU; Das Konfigurationsfenster...124
Abbildung 64: Beginn mit dem Fine - Tuning: QoS - CPU; Das fertige Ergebnis..124
Abbildung 65: Beginn mit dem Fine - Tuning: QoS - CPU; Einbinden des CPU - QoS Profiles fuhr Cluster-Level-High _MIN........125
Abbildung 66: Beginn mit dem Fine - Tuning: QoS - CPU; Einbinden des CPU - QoS Prfiles; das fertige Ergebnis fuhr Cluster-
Level-High..126
Abbildung 67: Beginn mit dem Fine - Tuning: QoS - CPU; Einbinden des CPU - QoS Prfiles; das fertige Ergebnis fuhr Cluster-
Level-Middle...126
Abbildung 68: Beginn mit dem Fine - Tuning: QoS - Netzwerk; Einbinden des Netzwerks - QoS Profils fuhr das Netzwerk (Data -
Center weit)..127
Abbildung 69: Beginn mit dem Fine - Tuning: QoS - Netzwerk; Einbinden des Netzwerk - QoS Prfiles; das fertige Ergebnis...127
Abbildung 70: Beginn mit dem Fine - Tuning: QoS - Storage; Einbinden des Netzwerks - QoS Profils fuhr den Storage Storage-R1
- Master (Data - Center weit)..128
Abbildung 71: Beginn mit dem Fine - Tuning: QoS - Storage; Einbinden des Storage - QoS Prfiles; das fertige Ergebnis............128
Abbildung 72: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Allgemein – Beispiel InfraServ1......................................131
Abbildung 73: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie System – Beispiel InfraServ1...133
Abbildung 74: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Konsole – Beispiel InfraServ1...134
Abbildung 75: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Host – Beispiel InfraServ1..135
Abbildung 76: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Hoch verfuhgbar – Beispiel InfraServ1...........................136
Abbildung 77: Kurzer Exkurs nach Kapitel 8.9.2.1.7 - Semi-Automatic-HA Teil1...138
Abbildung 78: Kurzer Exkurs nach Kapitel 8.9.2.1.7 - Semi-Automatic-HA Teil2...138
Abbildung 79: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Ressourcenzuteilung – Beispiel InfraServ1...............139
Abbildung 80: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Bootoptionen – Beispiel InfraServ1...............................140
Abbildung 81: Beginn mit dem Fine - Tuning: Vm - Erstellung; Kategorie Zufallsgenerator – Beispiel InfraServ1.........................141
Abbildung 82: Beginn mit dem Fine - Tuning: Vm - Erstellung; Erstellen einer virtuellen Disk – Beispiel InfraServ1..................142
Abbildung 83: Beginn mit dem Fine - Tuning: Vm - Erstellung; Erstellen einer virtuellen Disk; Assistent – Beispiel InfraServ1
...143
Abbildung 84: Beginn mit dem Fine - Tuning: Vorlage - Erstellung aus InfraServ1..145
Abbildung 85: Beginn mit dem Fine - Tuning: Erstellen einer Cluster - Richtlinie (DC1R1)...148
Abbildung 86: Beginn mit dem Fine - Tuning: Verteilen der neuen Cluster - Richtlinie..148
Abbildung 87: Beginn mit dem Fine - Tuning: Erstellung einer Affinitahtsgruppe fuhr Cluster-Level-High als Referenzbeispiel.
...150
Abbildung 88: Exkurs zur Asymmetrie des Clusters: Ein perfekt symmetrischer Cluster...151
Abbildung 89: Exkurs zur Asymmetrie des Clusters: Die einfachste Lohsung..151
Abbildung 90: Exkurs zur Asymmetrie des Clusters: Die etwas kompliziertere Variante..152
Abbildung 91: User und Rechtemanagement: Auswahhlen von ovirtadm aus der Domahne..155
Abbildung 92: Tests: Die Testumgebung in grafischer Form..157
Abbildung 93: Tests, Testreihe 1: Das Trenn- bzw. Abschaltschema...161
Abbildung 94: Tests / TR1-T0001-1: Der Ethernet - Port 1 wurde im laufenden Betrieb von gfsn1.mgmtdom ausgestreckt...162
Abbildung 95: Tests / TR1-T0001-2: oVirt hat den Unterbruch sofort erkannt und ihn in der Statusleiste gemeldet. Grafisch
wurde auch der aktuelle Zustand abgebildet...162
Abbildung 96: Tests / TR1-T0002-1: Der Ethernet - Port 1 wurde im laufenden Betrieb von ovn3.mgmtdom ausgestreckt....163
Abbildung 97: Tests / TR1-T0002-2: oVirt hat den Unterbruch sofort erkannt und ihn in der Statusleiste gemeldet. Grafisch
wurde auch der aktuelle Zustand abgebildet...163
Abbildung 98: Tests / TR1-T0003-1: STATIC_debian_Testsys_1 Ping in Richtung --> google.ch uhber pfSense Iface igb9, alle
Ifaces noch aktiv..164
Abbildung 99: Tests / TR1-T0003-1: STATIC_debian_Testsys_2 Ping in Richtung --> hbu.ch uhber pfSense Iface igb11, alle Ifaces
noch aktiv...164
Abbildung 100: Tests / TR1-T0003-1: STATIC_debian_Testsys_3 Ping in Richtung --> distrowatch.com uhber pfSense Iface
igb10, alle Ifaces noch aktiv...165

Diplomarbeit von Bogdanovic Theodor für die HFU 191

FullOpenSourceVirtualization

Abbildung 101: Tests / TR1-T0003-2: Trennen der Ifaces igb9 und igb 10 von der pfSense Firewall in laufendem Betrieb. Iface
igb11 bleibt Online..165
Abbildung 102: Tests / TR1-T0003-2: Start tcpdump auf igb10 und igb9 nach Trennung der Ifaces..165
Abbildung 103: Tests / TR1-T0003-3: Start tcpdump auf igb11, alle drei ICMP Pings laufen nun uhber das eine noch aktive Iface
igb11...166
Abbildung 104: Tests / TR1-T0003-3: Dieser Screenshot wurde von STATIC_debian_Testsys_1 wahhrend dem "schnellen"
Trennen der Ifaces 9 und 10 erstellt. Die Aufzeichnung zeigt den Zeitpunkt kurz vor und nach dem Trennen. Wie zu sehen ist,
fand kein Unterbruch statt...166
Abbildung 105: Tests / TR1-T0004-1: Host ovn3.mgmtdom wurde gewaltsam ausgeschaltet und ist per Hand in den Modus
Non Responsive gesetzt worden. Nachfolgend wurde uhber das Kontextmenuh das manuelle Fencing initialisiert. Nun beginnt
oVirt mit der Kalkulieren des HA fuhr diesen Cluster. Alle Schritte sind in der grauen Statusleiste der Abbildung als Ereignis zu
erkennen...167
Abbildung 106: Tests / TR1-T0004-2: Nach initialisieren des manuellen Fencing, wurde die VM neu gestartet und lahuft nun
auf ovn2.mgmtdom...168
Abbildung 107: Tests / TR1-T0005-1: Auf gfsn1.mgmtdom wurde per SSH verbunden und ein netstat aufgerufen. Dieser zeigt
klar, dass sahmtliche Storageverbindungen noch bestehen. oVirt selbst ist ebenfalls in der Liste, dies scheint aber an der hohen
Timeout - Phase von netstat zu liegen...169
Abbildung 108: Tests / TR1-T0005-2: Eine SPICE - Konsole wurde mit Absicht offen gelassen um von der VM aus in Richtung
google.ch zu pingen. Somit ist auch der Erhalt der Netzwerkverbindung gewahhrleiste...170
Abbildung 109: Tests / TR1-T0005-3: Ein Screenshot der Storage – Ansicht nach dem Einbinden der Engine (5 minuhtiger
Unterbruch)..170
Abbildung 110: Tests / TR2-T0006-1: Funktionierende Athentifizierung und Anmeldung an da-vm-2..172
Abbildung 111: Tests / TR2-T0006-2: Funktionierende Athentifizierung und Anmeldung an da-vm-1..172
Abbildung 112: Tests / TR2-T0007-1: Die allgemeine Regel, welche allen VM's den Zugang zum privaten Teil des Netzwerkes
verweigert (gilt auch fuhr WLAN1)...173
Abbildung 113: Tests / TR2-T0007-2: Wie zu erwarten lief die Verbindung in ein Timeout..173
Abbildung 114: Tests / TR2-T0008-1: Die allgemeine Regel, welche allen VM's den Zugang zu mgmtdom verweigert...............174
Abbildung 115: Tests / TR2-T0008-2: Wie zu erwarten lief die Verbindung in ein Timeout..174
Abbildung 116: Tests / TR2-T0009-1: Die allgemeine Regel, welche allen Nodes den Zugang zum privaten Sektor verweigert.
...175
Abbildung 117: Tests / TR2-T0009-2: Wie zu erwarten lief die Verbindung in ein Timeout..175
Abbildung 118: Tests / TR2-T0010-2: Wie zu erwarten lief die Verbindung in ein Timeout..176
Abbildung 119: Tests / TR2-T0011-1: Hier wurde der Download ohne Limitierung des Netzwerks durchgefuhhrt.......................177
Abbildung 120: Tests / TR2-T0011-2: Hier wurde der Download mit spezieller Limitierung des Netzwerks durchgefuhhrt.....177
Abbildung 121: Tests / TR2-T0012-1: Die unlimitierte VM konnte in 30s 56MB an Random - Daten generieren...........................178
Abbildung 122: Tests / TR2-T0012-2: Die limitierte VM konnte in 30s 53MB an Random - Daten generieren................................178
Abbildung 123: Tests / TR2-T0013-1: Der Zustand auf ovn1.mgmtdom vor der Migration / des Unbergangs in den
Wartungsmodus..179
Abbildung 124: Tests / TR2-T0013-2: Der eigentliche Migrationsvorgang nach einleiten des Wartungsmodus auf
ovn1.mgmtdom...179
Abbildung 125: Tests / TR2-T0013-3: Auszug aus dem Ereignisprotokoll von oVirt, wo die einzelnen Schritte ersichtlich sind.
...179
Abbildung 126: Tests / TR2-T0014-1: Ereignisanzeige von oVirt; die Migration wurde abgelehnt, da sie zu einem
Affinitahtsbruch fuhhrt...180
Abbildung 127: Tests / TR2-T0014-1: Taskanzeige von oVirt; Der Migrationsprozess wurde zuerst als i.O. klassifiziert und bei
der nachfolgenden Richtlinienpruhfung als unguhltig abgelehnt...180
Abbildung 128: Tests / TR2-T0015-1: Der effektive vergleich der beiden Verzeichnisstrukturen auf den GlusterFS Nodes.....181
Abbildung 129: Tests / TR2-T0016-1: Auszug der ISO's aus ISO_STORE1 auf gfsn1.mgmtdom...182
Abbildung 130: Tests / TR2-T0016-2: Auszug der ISO's aus ISO_STORE2 auf gfsn2.mgmtdom...182
Abbildung 131: Tests / TR2-T0017-1: Die unlimitierte VM konnte 835MB an Daten in 30s zum Storage Transportieren.........183
Abbildung 132: Tests / TR2-T0017-1: Die limitierte VM konnte 645MB an Daten in 30s zum Storage Transportieren..............184

Diplomarbeit von Bogdanovic Theodor für die HFU 192

FullOpenSourceVirtualization

 12.3 Tabellenverzeichnis
Tabelle 1: Muss Ziele: Netzwerksegment..30
Tabelle 2: Muss Ziele: Virtualisierungssegment...31
Tabelle 3: Muss Ziele: Storagesegment...32
Tabelle 4: Wunschziele: Allgemeine Ziele...33
Tabelle 5: Direkter Vergleich der beiden Lohsungen pfSense und opnSense...38
Tabelle 6: Kriterien fuhr die Nutzwertanalyse zur Wahl eines geeigneten RAID - Level..43
Tabelle 7: Gewichtungsberechnung zur Wahl eines geeigneten RAID – Levels..44
Tabelle 8: Bestimmung des Zielerreichungsfaktors fuhr die Nutzwertanalyse zur Wahl eines geeigneten RAID – Levels...............45
Tabelle 9: Ermittlung eines Siegers der Nutzwertanalyse zur Wahl eines geeigneten RAID – Levels...46
Tabelle 10: Kriterien fuhr die Nutzwertanalyse Betreff Konzept 3.5 oder Konzept 3.6..51
Tabelle 11: Gewichtungsberechnung zur Wahl eines geeigneten Konzeptes (3.5 vs. 3.6)..52
Tabelle 12: Bestimmung des Zielerreichungsfaktors fuhr die Nutzwertanalyse zur Wahl eines geeigneten Konzeptes (3.5 vs.
3.6)...53
Tabelle 13: Ermittlung eines Siegers der Nutzwertanalyse zur Wahl eines Konzeptes (3.5 vs. 3.6)..54
Tabelle 14: Kriterien fuhr die Nutzwertanalyse betreffs Konzepte OneFamily und ToBig..56
Tabelle 15: Gewichtungsberechnung zur Wahl eines geeigneten Konzeptes (OneFamily vs. ToBig)..57
Tabelle 16: Bestimmung des Zielerreichungsfaktors fuhr die Nutzwertanalyse zur Wahl eines geeigneten Konzeptes
(OneFamily vs. ToBig)...58
Tabelle 17: Ermittlung eines Siegers der Nutzwertanalyse zur Wahl eines Konzeptes (OneFamily vs. ToBig)....................................59
Tabelle 18: Realisierung des Netzwerksegmentes: IP - Adressschema..70
Tabelle 19: Realisierung des Netzwerksegmentes: Regelsatzschema zu den notwendigen Regeln...70
Tabelle 20: Realisierung des Storagesegmentes: Das Adress- und Namensschema der Gluster Nodes...78
Tabelle 21: Realisierung des Virtualisierungssegmentes: Spezifikationen von Dell PowerEdge...86
Tabelle 22: Realisierung des Virtualisierungssegmentes: Spezifikationen von Supermicro Barebone..87
Tabelle 23: Realisierung des Virtualisierungssegmentes: Spezifikationen eines Fujitsu Primergy Servers..87
Tabelle 24: Realisierung des Virtualisierungssegmentes: Spezifikationen von Supermicro Barebone 1HE..88
Tabelle 25: Realisierung des Virtualisierungssegmentes: Das Adress- und Namensschema der oVirt Virtualisierungsnodes....90
Tabelle 26: Realisierung des Virtualisierungssegmentes: Das Adress- und Namensschema der oVirt Engine....................................90
Tabelle 27: Test: Der direkte Vergleich mit den Anforderungen im Pflichtenheft - Netzwerksegment...185
Tabelle 28: Test: Der direkte Vergleich mit den Anforderungen im Pflichtenheft - Virtualisierungssegment....................................185
Tabelle 29: Test: Der direkte Vergleich mit den Anforderungen im Pflichtenheft - Storagesegment..186

 12.4 Befehls- und Klickverzeichnis
Befehl 1: Realisierung des Netzwerksegmentes (Klicken): Erstellung einer Link Aggregation mit LACP als Algorithmus............64
Befehl 2: Realisierung des Netzwerksegmentes (Klicken): Einbinden der Link Aggregation in System...65
Befehl 3: Realisierung des Netzwerksegmentes (Klicken): Einbinden einzelner Interfaces ins System..67
Befehl 4: Realisierung des Netzwerksegmentes (Klicken): Erstellen der Bridge mit Angabe der dazugehohrigen Interfaces.......68
Befehl 5: Realisierung des Netzwerksegmentes (Klicken): Einbinden der Bridge ins System..68
Befehl 6: Realisierung des Netzwerksegmentes (Klicken): Der Weg zum Menuh der Firewall - Regelkonfiguration..........................71
Befehl 7: Realisierung des Netzwerksegmentes (Klicken): Erstellung eines IP - Adressalias...73
Befehl 8: Realisierung des Storagesegmentes (Befehl): Installation der notwendigen Softwarepakete..79
Befehl 9: Realisierung des Storagesegmentes (Befehl): Erstellen des Software - RAID 5...80
Befehl 10: Realisierung des Storagesegmentes (Befehl): Erstellen des XFS Filesystems..81
Befehl 11: Realisierung des Storagesegmentes (Befehl): Anlegen der beiden Gluster Ordner...82
Befehl 12: Realisierung des Storagesegmentes (Befehl): Kontaktaufnahme mit Node2 (GlusterFS)..82
Befehl 13: Realisierung des Storagesegmentes (Befehl): Erstellung des GlusterFS Volumes oVirtStorage1...83
Befehl 14: Realisierung des Storagesegmentes (Befehl): Erstellung des GlusterFS Volumes ISO_STORE1..83
Befehl 15: Realisierung des Storagesegmentes (Befehl): Setzen der richtigen Rechte (GlusterFS)...84
Befehl 16: Realisierung des Virtualisierungssegmentes (Befehl): Installation von VDSM..92
Befehl 17: Realisierung des Virtualisierungssegmentes (Befehl): Einrichten vom VDSM Daemon auf den beiden Storage Nodes
und der oVirt Engine...92
Befehl 18: Realisierung des Virtualisierungssegmentes (Befehl): Installieren der Paketquelle epel..93
Befehl 19: Realisierung des Virtualisierungssegmentes (Befehl): Installations von ovirt-engine-setup...94
Befehl 20: Realisierung des Virtualisierungssegmentes (Befehl): Initialisierung der oVirt Installation...95
Befehl 21: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Erstellung eines Data - Centers.........................99
Klicken 22: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Erstellung der Cluster.......................................100
Befehl 23: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Hosts einbinden mit Assistenten...................106
Befehl 24: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Einbinden des Master Storage........................110

Diplomarbeit von Bogdanovic Theodor für die HFU 193

FullOpenSourceVirtualization

Befehl 25: Realisierung des Virtualisierungssegmentes (Befehl): oVirt - Engine; Einbinden des Master Storage...........................112
Befehl 26: Realisierung des Virtualisierungssegmentes (Klicken): oVirt - Engine; Einbinden des Master Storage........................113
Befehl 27: Realisierung des Virtualisierungssegmentes (Klicken): Zum Konfigurationsmenuh des Netzwerks von
ovn4.mgmtdom...115
Befehl 28: Realisierung des Virtualisierungssegmentes (Klicken): Zum Konfigurationsmenuh des Netzwerks von
ovn4.mgmtdom...121
Befehl 29: Realisierung des Virtualisierungssegmentes (Klicken): Beginn mit dem Fine - Tuning: QoS - CPU; der Weg zum
Konfigurationspunkt des Einbindens...125
Befehl 30: Realisierung des Virtualisierungssegmentes (Klicken): Beginn mit dem Fine - Tuning: QoS - Netzwerk; der Weg
zum Konfigurationspunkt des Einbindens...126
Befehl 31: Realisierung des Virtualisierungssegmentes (Klicken): Beginn mit dem Fine - Tuning: QoS - Speicher; der Weg zum
Konfigurationspunkt des Einbindens...127
Befehl 32: Realisierung des Virtualisierungssegmentes (Klicken): Herunterladen des openSUSE ISO's...129
Befehl 33: Realisierung des Virtualisierungssegmentes (Klicken): Herunterladen des openSUSE ISO's...129
Befehl 34: Realisierung des Virtualisierungssegmentes (Klicken): Der weg zur ersten Vorlage..144
Befehl 35: Realisierung des Virtualisierungssegmentes (Klicken): Zum Konfigurationsmenuh der Cluster – Richtlinien.............146
Befehl 36: Realisierung des Virtualisierungssegmentes (Klicken): Einrichten der Cluster – Richtlinie auf Cluster-Level-High.
...148
Befehl 37: Realisierung des Virtualisierungssegmentes (Klicken): Bilden der ersten Affinitahtsgruppe...149
Befehl 38: User und Rechtemanagement (Klicken): Einbinden einer Domahne zur Authentifizierung per Active Directory.......153
Befehl 39: User und Rechtemanagement (Klicken): Neustart des Application – Server zur Domahnen – Einbindung....................154
Befehl 40: User und Rechtemanagement (Klicken): Der Weg zum Einbinden eines neuen Users aus der Domahne.......................154
Befehl 41: User und Rechtemanagement (Klicken): Beginn mit der Rollen- und Rechtevergabe..155

 12.5 Quellenverzeichnis

Die meistgenutzte Quelle fuhr Suchanfragen war innerhalb dieser Arbeit Google. Somit ist eine genaue

Angabe kaum mohglich, da es eine Vielzahl an besuchten Seiten gab. Die Seiten, von welchen auch

effektiv Inhalt extrahiert wurde, sind auch an den entsprechenden Positionen innerhalb der Arbeit

gekennzeichnet. Hier sei als meistgenutzte Quelle die oVirt – Seite unter http://www.ovirt.org selbst

genannt.

 12.6 Bücherverzeichnis

Es wurden keine Buhcher innerhalb dieser Arbeit als effektive Hilfsmittel genutzt.

Diplomarbeit von Bogdanovic Theodor für die HFU 194

FullOpenSourceVirtualization

 13 Beilagen

Beilage Titel Inhalt / Bemerkung

1 Datentrahger mit nachfolgendem Inhalt

1.1

Dokumentationen In PDF und ODT Format. DOCX ist konvertiert
worden, saubere Darstellung in MS Word ist nicht
garantiert. Die PDF – Variante wurde modifiziert,
indem Blindseiten entfernt wurden. Dies ist ein
interner Fehler von LibreOffice und hat keinen
Einfluss auf die Integritaht dieser Arbeit. Im ODT sind
die Blindseiten noch sichtbar.

1.2
Formelles Hier ist in PDF Form zu finden, der Antrag des

Studenten, der Auftrag seitens HFU und die
Betreuungsprotokolle.

1.3

Tests Hier sind in div. Unterverzeichnissen die Screenshots
der Test (auch Scripts) zu finden, im Falle, dass die
Qualitaht innerhalb der Ausgedruckten Dokumentation
nicht ausreicht.

1.4 addons

1.4.1
Experte Hier finden Sie in div. Unterverzeichnissen die nohtige

Software und die Zertifikat, welche notwendig sind,
um sich mit dem Cluster per OpenVPN zu verbinden

1.4.2
Betreuer Hier finden Sie in div. Unterverzeichnissen die nohtige

Software und die Zertifikat, welche notwendig sind,
um sich mit dem Cluster per OpenVPN zu verbinden

1.5
Fotoalbum Hier sind einige der Bilder, welche wahhrend des

Aufbaus des Clusters gemacht wurden.

1.6 Video Hier ist ein Video des in Betrieb stehenden Clusters.

1.7

Gantt Hier sind in mehreren Unterverzeichnissen, welche
den Namen der jeweiligen Monate tragen, jeweils die
originalen Guntt – Files und ihre dazugehohrigen
Exports im PDF und PNG Formaten.

1.8

generalInsetrs Hier sind, falls noch im Nachhinein noch notwendig,
div. Kleinigkeiten, welche nicht explizit erwahhnt
worden sind oder allgemein nicht notwendig.
Sozusagen, nachtrahgliche Beilagen im sinne von nicht
notwendigen Anhahngen.

Diplomarbeit von Bogdanovic Theodor für die HFU 195

